

Brainhat Notes

Copyright (C) 1998, Kevin Dowd

August, 1996

"You cannot achieve the impossible without attempting the absurd."
This project is called "huey" which is a rough aglomeration of the words "human" and "ynterface." The goal is to make a program that can understand language, maintain context, remember, and answer questions. A lot of work has been done on natural language and cognition by a lot of very talented people; I am trying to be realistic about my expectations for the project. At the same time, I have been thinking about the problem on and off since 1980, when I took a natural language processing course at the University of Connecticut.
My approach is brute force. I am going to go over every corner of the colloquial language, identifying relationships between words and ideas. The machine can compile these into conceptual "families" or topological "neighborhoods"--places where like ideas reside. Together, these relationships will provide a platform for "basic knowledge"--the kinds of understandings that everyone has about the world about them.

New information, taken as natural language, will be compiled into strings of idea "family" identifiers. A given utterance may be parse any of N ways. Each possibility will be matched against the collection of "basic knowledge," and against the current context to find a best match. As time goes on, the machine may learn more about its surroundings from its conversations with others.

A lot has to go right, frankly. I have dismissed the problem of attempting to make the machine really "know" anything. I believe it is possible to *almost* know something by knowing things about it.

Anyway, the result should be a lot of data structures and code. Wish me luck.
Kevin Dowd
October 19, 1996
I have been keeping a journal of thoughts and progress in a notebook, but I keep misplacing it. Besides, it occurs to me that this is a better way; my penmanship has gotten terrible. Additionally, I can easily paste snippets of data and code into this kind of record. So from now on, this is it.

The early history of the project will come out as we go along (or you can see if you can find the notebook...).
 A couple of notes of historical record:
The project is called brainhat, at present. I have created a few g.p. recursive algorthims that allow me to include parsing rules and grammar together in the input data. With the exception of the rules that parse the input data, all others are read in at run-time.

It works!

I have been experimenting with text from a Mario Brothers instruction booklet.

Sentences like "the mushroom kingdom has been a peaceful place, thanks to the deeds of mario and luigi" get correctly parsed and linked into compound concepts (CCs). Concepts are then checked against themselves (a vertical comparison) to see if they are at least sort-of sensical, and also compared against a context buffer (a horizontal comparison)--a record of on-going utterances. The best of the matches is included into the context buffer, and processing proceeds.

The grammar keeps growing, and the rule base is growing and changing. Someday, it will settle down...
 The next problem is this: I need a more general purpose method to make comparisons, and I need a way to cause changes in the context buffer as a result of sentences parsed. For instance, it would be nice to be able to say in response to a sentence like "Another man walked in..." that the a *new* person is to be placed into the context buffer. Likewise, when the input says "the first man...," I want to be able to search back past the most recent entry.
All of this suggests that I need a simple command language with macros that can be appended to concepts and rules. (more later... baby crying).

(many hours later) I'm back!

Another thought: in addition to the ability to attach processing to pattern matches, I also need to identify a core group of possible structures for sentences.
I have a structure for conditionals, for instance:

if mario is happy, then luigi is happy

Best vertical score = 0.

Best horizontal score = 0.

Vertical and Horizontal agree.

Best vertical:

define
ROOT [1096]

consequence

ROOT

condition

ROOT

define
ROOT [1095]

attribute
happy(1)

verb

tobe(2)

subject
luigi(1)

define
happy(1) [1022]

label

glad

related
fun(1)

child

mood(1)

define
tobe(2) [1049]

label

forms

child

action(1)

define
luigi(1) [1014]

label

luigi

related
mario_bros(1)

child

man(1)

related
mario(1)

define
ROOT [1094]

attribute
happy(1)

verb

tobe(2)

subject
mario(1)

define
happy(1) [1022]

label

glad

related
fun(1)

child

mood(1)

define
tobe(2) [1049]

label

forms

child

action(1)

define
mario(1) [1013]

label

mario

related
mario_bros(1)

child

man(1)

related
luigi(1)

Here, the condition is given by one sentence (ROOT[1094]), and the consequence is given by another (ROOT[1095]). This is a basic form for many sentences, and for many flavors of sentences. "Luigi is happy when mario is happy" would be another example of a sentence that would parse into the above CC. Anyway, if I can identify a finite set of sentence (CC) forms, I can reduce the problem of sentence generation, coming down the road.

A few problems to understand and fix:

The following concept has two pieces of text associated with it--human and person
define
human(1)

label

human

label

person

child

mammal(1)

wants

mood(1)

If I say "the sad human is mario," and then "what is human?," the answer will be just as above.
If I then say "what is person," then the sad attributes that I had meant to ascribe to human will be associated with person. I kind of wanted the two to travel together and change together...
Another feature I thought I had was for inheritance of the wants directive. If, as above, I say "(human(1)) wants mood(1)," then I would like "man(1)" and "woman(1)" to inherit the same wants setting. This would make sense since "man(1)" and "woman(1)" are child of "human(1)" Again, this might be something I can describe with my as yet unspecified macro language.
25 October 26, 1996
More examples of on-the-spot-processing that I would like to include in the program:

· If a sentence says "x is no longer y," I want to be able to go back through the context and either change "x is y" to "x was y," or add "x was y" if I don't find anything about the relationship between x and y.
· If a sentence says "the ball is blue," I want to recognize that blue and (say) red are orthogonal, and that a blue ball cannot be the red ball talked about earlier. This suggests that I need a way to talk about orthogonality and exclusivity of attributes.
· I need to be able to generate inferences. If, for instance, I have a sentence that says that "bill is mary's brother," and another that says "june is bill's mother," then I want to be able to generate "june is mary's mother" as a modification to a complex concept.
What should my processing language look like? How about:
call routine1 (context, results)

routine routine1 (p,o)

declare conchain p,o

declare clink q,r

p = context

o = candidates

while p

q = linkptr.p

while q

if (type.q = WANTS)

r = linkptr.o

while r

if (value.r SATISFIES value.q)

<something>

endif

r = next.r

endwhile

endif

q = next.q

endwhile

p = next.p

endwhile

Or how about this (in response to "ball is blue"):

If SUBJECT in RESULT has an ATTRIBUTE that is ORTHOGONAL to OBJECT or

SUBJECT in CONTEXT, then create a new copy of SUBJECT for CONTEXT.
or
If SUBJECT in RESULT has NOT an ATTRIBUTE in RESULT, and SUBJECT in CONTEXT has ATTRIBUTE in RESULT, then modify SUBJECT in CONTEXT by adding 'past(1)'.

Or perhaps something that deals with context and results as objects with predefined operations:
look for components of RESULT in CONTEXT

where SUBJECT is equal, and ACTION is similar

if OBJECT is similar ... Ah... f'get it!
I'm wasting too much time on the final form of the compiler. For now, I am going to make references to subroutines written in C. I'll come back to creating a language for processing concepts later, after I see what kinds of features I am really going to need.

So, there we have it: I am going to create just hooks from rules to subroutines.

Each hook will pass control to a single subroutine, which can further pass control to others. There will be at least two hooks associated with each rule. One will be for choosing the best match among all of the results (I already do this in the main routine by doing a vertical score (up and down the members of a complex concept) and a horizontal score (between the candidate and the context buffer) of the results). By associating subroutines with each of the rules, the selection process can be customized to the rule that matched the input text. If no selection hook is specified, a default selection process will take place (as does now in main for all candidates).
define foo

label
foo

rule
$r`baz`0 $c`faz`1

map
ROOT,IGNORE

<whatever>

select
DEFAULT

postp
PROCESSX

inside a routine somewhere...

switch (i) {

 ...

 case PROCESSX:

 call processx(<args>)

Changes to make:

· Add a couple more members to the concept structure.

· Find a convenient spot(s) to call the selection and post-processing routines.
· I really need to preprocess the input data with cpp in order to turn symbols into numbers (I'm actually typing in numbers at this point). This means splitting def.h into two files--def.h for structure/data type definitions, and constants.h for defines.
November 3, 1996
I am making some cleanups/changes. Right now, I am looking over the horizontal and vertical scoring routines that play a part in DEFAULT0. Particularly, I am going to make the check for RELATEDness between concepts check for common parents. (Done).
OK, now I have enough basics in place to start building something useful. I need to build a little bit at a time; the Mario and Luigi stuff works, but I jumped into some pretty complicated constructs, while skipping some of the basics. I am going to skinny the sentence types down, and start making a test suite.

Mario and Luigi can stay if they don't mind playing with blocks and balls.
November 6, 1996
I added some g.p. post processing ability, and started to create post processing routines. One pushes attributes down onto compound subjects.

So, if you say "mario and luigi are happy," brainhat gives mario and luigi the "happy" attribute individually, as well as together.
 Another postprocessing routine detects orthogonality in things, based upon orthogonal attributes. I can't have a ball that is both blue and red; the post processing routine detects that, and eliminates the possibility. It needs more work, though. As it stands, orthogonality detection leaves a useless CC in the context buffer--one that will never pass the orthogonality test. I need the routine to clone the orthogonal CC, creating two CCs, each having one of the two orthogonal properties.
November 7, 1996
 I am still fighting with the orthogonality question because it opened other cans of worms...
November 11, 1996
 I am still grieving over how to tighten up the selection process. As it is now, two tests are run:
· A vertical check, to see how well portions of a prospective CC hang together with themselves. Seems like a reasonable test.
· A horizontal check of the components of the prospective CC against the contents of the context buffer, to see how similar the concept is to other stuff in the buffer. Unfortunately, this is kind of simplistic.
Anyway, the whole thing needs to be thought over deliberately.

November 16, 1996

Currently, the matching process for $c`whatever` rules pulls from both the general knowledge pool, and from the context buffer.

Matches from the pool are cloned, and then modified.

Matches from the context buffer are modified in place.

There will be certain kinds of modifications that are wrong, however. In the case of orthogonal attributes, it isn't really swell to do what I am doing now: adding orthogonal attributes to things in the context buffer (modifying in-place), and then eliminating the orthogonal attributes via a subsequent post processing step.

I can imagine scenarios where it could be really difficult to undo the damage caused to the context buffer. Take, for example, the case where two orthognal attributes are added to something in the context buffer. "Happy blue mario" might get modified by "red" and "sad."

This would then leave "Happy sad red blue mario" in the context buffer--which might be difficult to clean up.

Anyway, this discussion points to a change in the way memory is conserved by not cloning concepts found in the context buffer.

I am afraid that I am going to have to clone them before modifying them. If, after selection is completed, something cloned from the context buffer is to be returned to the context buffer, I will have to replace the copy already there with the modified clone.

November 24, 1996

I'm going to deal with pronouns now.

There are lots of issues hiding, I'm sure.

For a first pass, though, I am going to look at some simple pronoun processing. Some sample cases to consider:
Jim was talking to John. I saw him on the beach.
 The him in the second sentence is ambiguous. I could look for the closest subject or object matching wants or requires criteria. Or I could gather the closest subobjs, and let them fight it out, based on wants/requires. Here's another case to consider:
We went to the beach. It was fun.
 The it in sentence 2 refers to the action or whole of sentence 1. For comparison:
 The clock stopped. It was broken.
 This time, it means the clock. How do I tell them apart, and how do I deal with "The clock stopped. It was fun."? Doing a quick mental survey, it appears that there is a class of sentences that match the first case. They are of the form:
tobe goodness-attribute. So where goodness-attribute includes words link "boring," "fun," and "useless." Once the set of goodness-attributes fails to match my requirements, I can fail over to regular attributes, such and "green" or "crushed."
 All pronouns can have wants associated with them. She can have wants female, they can have wants multiple, and so on. I could even use pronouns to subsequently determine the sex of subjects mentioned previously, just as one does in speech.
November 29, 1996
 I added one pronoun post processing routine, called lowpronouns. I call it that because it replaces pronouns with subjects and objects from the context buffer without looking extensively at the way they are used, and without copying any attributes. Accordingly, the replacements have to happen as soon as the pronouns are recognized--when the lower leaves of a CC are being assembled. Any attributes assigned before pronouns are replaced will be lost. For example, in sentence "It was blue," the it has to be expanded before that blue attribute is assigned; no copying of attributes occurs.
 To support the lowpronouns processing, I made a con called personal_pronouns, and made it the parent of several other concepts, including he(1), she(1), and

it(1).
Anyway, my preliminary tests are very satisfying.

I can say sequences like: "Mario is happy. Princess is sad. He and she are loud," and the result is as expected. I still have to consider processing of they.
 A more elaborate, and more context-sensitive replacement routine could evaluate pronouns after the CCs are completely assembled. (called hipronouns?).

Next, I am going to build another lowpronoun-like processing routine to handle the cases where "it" (and other forms) refer back to whole events, and assign them goodness attributes. (I described this earlier).
 On another note, I found a package on the Internet called lotec that processes captured speech, and returns a probability weighted list of matched words. This could be a great match for brainhat; brainhat can figure out what makes the most sense out of the words supplied...

November 29, 1996

Hmmm... I'm grieving over something:

The class 'events' pronouns is larger than I originally reckoned, and a little bit difficult to recognize. I might say:
It was Christmas. It was fun. It was the best time of our lives.

 What's it? Not only that, how do I tell a larger it (like the time of ones

life) from a smaller it (like a glass of water)? I have to think this over.

December 10, 1996

Today I added parsing for sentences like "mario wants to see the princess." Next, I will add "mario is happy to see the princess."
December 13, 1996
I am starting to see a problem. A sentence like "mario is happy" gets picked up by the following rule:

define
declare5

label

sent

label

something-is

map

ROOT,IGNORE,ATTRIBUTE

rule

$r`csubobj`0! $c`tobe`1! $r`cattr`2

postp

ORTHELIM

postp

PUSHATTRS

The map, ROOT,IGNORE,ATTRIBUTE, says that the results should be strung together such that "happy" is an attribute connected to "mario." Now imagine that the sentence says "mario was happy." I'd like the attribute to have an EMPHASIS tag

appended to it that points to, say, past(1).
(note to self: should it be the other way around--should attrs be tied to emphasis tags?) I can't do it with this simple map scheme.
Another problem is that I have to way of building CCs that are more than two levels deep by way of the map directive. The issue came up the other day with this rule:
define
desire1

label

sent

rule

$r`csubobj`0! $c`desires(1)`1! [to]$c`action`2! [to]$r`csubobj`3

map

SUBJECT,IGNORE,VERB,OBJECT

postp

SUBJDESIRE

A sentence that might fit is "mario wants to the princess."

The translated version is "mario wants mario to see the princess." This expands into a three-level CC:
 subject desires

 |

 ROOT

 / | \

 subject action object

I couldn't build such a CC with the map directive, so I had to create a post processing routine to patch an intermediate result(SUBJECT,IGNORE,VERB,OBJECT) up.

Anyway, I think it is time to expand the notion of a map, even though the code is pretty complicated and the current scheme actually works. What should it look like?
 SUBJECT(0),DESIRES[VERB(2),SUBJECT(0),OBJECT(1)]

What about inheriting properties from other elements in a sentence match, as in "mario was happy"? Instead of ROOT,IGNORE,ATTRIBUTE I might use:
 ROOT(0),ATTRIBUTE(2),ATTRIBUTE(attributes-from(1))
In this case, attributes-from strips the attributes from argument 1 (the verb) and assigns them to the subject.

On the other hand, I could punt for now, and continue to post process for special cases. In lieu of ROOT,IGNORE,ATTRIBUTE, for instance, I could use SUBJECT,VERB,ATTRIBUTE, and post-process this, copying the verb's attributes.
December 15, 1996
 Here's something to help fix the other problems: I can start assigning verb tense to attributes and nouns used as attributes.

That way, I can say that something was red, or something is not yellow. This becomes particularly important in cases where a future or former attribute is orthogonal to a present attribute, ala "Mario was sad. Mario is happy." Anyway, the result is a new primitive, tense.
January 5, 1997
 How should brainhat respond... I could have a routine, speak, that attempts to find a sentence structure, and then blurts something out. If, for instance, I find a subject, verb, and object, I could make brainhat speak a sentence. If, on the other hand, I just find a son-of-thing with some attributes attached, I could attempt to describe the thing. This should make a reasonable first pass...
 Of course, there are zillions of other things to think about, but I though it might be fun to have brainhat "say" something.
January 25, 1997
 Brainhat says things, particularly it repeats declarative sentences. So if I say: "Mario is happy." "Mario sees the ball." Brainhat says "happy mario see the ball." Now, if I say "mario sees the ball" "mario is happy", I will want

brainhat to infer that mario is happy because he sees the ball. So much to do, and so many distractions...
 Today, I am going to start on making questions initiate processing. Particularly, I want answers to questions like "what is the ball?" I am not going to hard code the processing--I am trying to avoid that (and have done too much of that kind of thing already).

Instead, I want the word "what" to match children of "thing."

Likewise, I will expect "where" to match a location or preposition. As a first cut, I am going to make the match find the child of (say) thing that best fits the context.
 Of course, for true gratification, I am also going to need speak to describe things (subjcons). That's so easy; maybe I'll do that first.
January 26, 1997
 Done.

As for the bigger project... I guess that I want to identify all of the "whats" (parents) of Mario (a man, a male, ...), and then select the one that best fits the context.

An interesting, related idea comes to mind: when I assign a thing (say Mario) a title (e.g. mario is the mayor, or mario is a drunk), I won't do an attribute. Instead, I'll make a parent/child relationship between Mario and the title.

February 11, 1997

I have been away from the project for a while.

Business has been good, and I had to write an article for InformationWeek.

Things don't look to promising coming up either; I have slides to prepare this month, plus I have to really get going on reworking the Getting Connected book.

As for brainhat, I figure that there are a lot of sub-projects I could work on:
· Clean up the existing code.
· Make scoring routines more general, and actually generate them from tables. I could say, for instance, that I am looking for ATTRIBUTES and ADVERBS, and that I want to traverse ROOT, SUBJECT and OBJECT, and that if I find that a given ATTRIBUTE is a child of <something>, score thusly...
· Make the presence of qualifiers raise best matches from the context buffer in a very general fashion. For instance, the presence of "what" in an utterance could cause a search for a match to "what"--a thing. Likewise, "who" could find a person...
· Treat titles as parent/child relationships, as discussed above.
· Handle TENSE and NUMBER more deliberately.
· Handle prepositions, and assign the results as attributes.
· Add HINTS to both rules and words. These will be sentences that get dropped into the context like everything else.
· Make it possible for brainhat to create new atomic concepts based upon context and questions asked of the user.
· and more...
March 17, 1997
Finally got back to this. I had been preparing slides for a presentation at SANS 97. Right now, I am going through the post processing routines: separating them, and cleaning them up.
I notice that I need a routine "pushtense" to impose the tense of a verb onto the ATTRIBUTES and REQUIRES of a CC.
March 29, 1997
I can ask brainhat some questions, such as "what color is the ball?", "is the ball blue?", and "what color was the ball." I am going to go back and work on some of the issues above.

The big looming question is how to get brainhat to organize larger, grander thoughts into a coherent stream of ideas or questions. Lots to do....
Also, on the subject of assigning CHILD/PARENT relationships for titular references (mario is the mayor, mario is a drunk), I had thought that I would make mario the CHILD of such references (cloned). On the other hand, I might want to make mario the PARENT.

Here's why: I already have an issue with "what" kinds of qualifications when it comes to things. Currently, if you ask "what is mario?", you will get one of the parents ("mario is a male").
But what about the case where I say "what is the toy?"

I don't want to say "it is a thing" (using the PARENT).

I might prefer to say "it is a ball" (using a CHILD in the context). Anyway, when I answer "what is mario... he is a drunk", it might be better to make a child reference, though I have to think about it some more.
(later)

The other problem is that the titular assignment can set up an equivalence relationship, e.g. mario is the king, the king is mario. Which should be the parent, and which should be the child? I guess I could ignore the parent/child thing for some types of transactions, such as trolling for "whats."
 human

 \

 male hero

 \ /

 mario

 \

 king

"Whats" could come from above or below (PARENT or CHILD), subject to the best fit with the context.

How about this:

For "mario *is* the king":

· check to see if (concept mario == concept king). If so, do nothing.
· check to see if (mario is parent of king or vice versa). If so, do nothing.

· Merge mario and king (two labels on merged con) and add to context.
For mario is *a* king:
· check to see if (concept mario == concept king). If so, do nothing.

· check to see if (mario is parent of king or vice versa). If so, do nothing. (so far, same as above).

· add CHILD/PARENT relationship to mario and king.
I will need to start allowing tense to be assigned to OBJECTs, SUBJECTs, etc.

I might need to use a different kind of TENSE tag (though I really don't want to). This way, a thing can be living (say) in the past tense with different titular parameters than in the present; mario might have been king in the past, but might not be today.
March 30, 1997
This tense question is starting to give me grief.

I currently attach TENSE tags to things without difficulty; they are added to ROOTs, and pushed down to ATTRIBUTES by post processing routines.

Everything was fine until I started to grieve over titular assignments. The problem is that I would like to be able to say "mario is the mayor" or "mario was the mayor", and have the correct tenses apply.

If I simply merge mario and mayor, which is what I planned to do, then there is no way to add tense to the association. Anyway, this problem is threatening to blow up tense handling in general...
Here's my current thinking: tense will now be something that you inherit as you traverse the components of a CC. So if I have a CC that says:
 ball

 ATTRIBUTE / \ ATTRIBUTE

 / \

 red blue

 TENSE / \

 / \ EMPHASIS

 past very

The I will pass through a "tense window" as I traverse the CC into ATTRIBUTE "red." This means that "very" will also have an implied TENSE tag.
Regarding the problem with titular assignment, I am *not* going to merge cons (e.q. king and mario). Instead, I am going to link them through an EQUIVALENCE tag to an intermediate node that acts as the window.

 mario king

 EQUIV. \ /

 \ / EQUIV.

 ROOT

 |

 | TENSE

 past

This way, either mario or the king can be associated with one another through the EQUIVALENCE association, and with a variety of tenses (future and past, for instance). Tenses (I think) will probably become more exact anyway--covering segments of time ("yesterday" or "in 1974", for example).
One side note: equivalence relationships could introduce cycles and processing loops; I have to be careful not to follow an equivalence relation around in a circle. As a partial answer, I think I will provide some facility for collecting a list of cons that have been already visited, and consult these as processing proceeds. I need this in order to expand pattern matching away from "first fit wins".
April 5, 1997
Well, I have been grieving over this issue for days: how can I make

(say) mario == the king over a limited span of time?

After imagining all kinds of scenarios, I have decided to simply tag "things" with TENSE. So far, no things carry tense; tense is related to verbs and attributes. With "things" carrying tense, it will be possible to have (say) several Marios in the context--one in the present tense, and one in the past.
...on second thought, this idea sucks too. When it came time to tag a new attribute to mario, which one would I update?
April 6, 1997
What if I just add tense to all tags? It could be a third member of the rlink structure. That might be the fix...
April 7, 1997
...I think that's the fix I was looking for. It's simple, and I can almost convince myself that it makes sense. Anyway, I have just tarred everything up and tucked it away because I know that adding tense to links is going to be a disruptive and somewhat involved modification. That, and I have taxes due next week.
May 14, 1997
Hmmm.... I nuked the entry I made in this file yesterday just before I started implementing tense-setting on links.

I decided after fooling with it a little bit that I think it might be a cruddy idea. I am going to forge ahead with TENSE tags, as before, and think about the idea of embedding tense (and number) in links later. Or never.
May 17, 1997
Having abandoned the tense within links idea for the-being, I went back to implement titular assignment (which works (I think)).

I had another related issue, though, which came up when I was playing with the new PARENT/CHILD relationships:

Say that you tell brainhat that "Mario is the ball" and "the toy is blue."

Here, Mario becomes a descendant of toy (right or wrong...), and should also be considered blue unless some orthogonal attribute disagrees. The problem is that Mario has become the descendant of the non-cloned, non-blue version of toy.
Observation: I will need a dream routine that moves the intervening nodes in PARENT\CHILD relationships to take advantage of best-fit cons in the context buffer. E.g.:

toy (basic) toy (context) toy (basic) toy (context)

 \e /

 \e /

 ball ======> ball

 / /

 mario mario

May 18, 1997

I need a technique for recognizing patterns within CC's. A already depend upon pattern matching for the speaking routines, and to a lesser extent for the post-processing routines. CC pattern matching is going to be critical for the dreaming routines.
Anyway, I have been experimenting with a few forms to get an idea what would work best. What I have come up with looks a lot like the straight text matching language that parses sentences. Matching components of CCs is, of course, much different, and perhaps a bit easier.

Here are a few examples:

$t`ROOT`9($l`SUBJECT`0,$l`OBJECT`1,$l`VERB`2)

might match

 ROOT

 / | \

 SUBJECT / | \ OBJECT

 / VERB \

 / | \

 (something) (something) (something)

The components within parenthesis could appear in any order, just as long as they were all matched.
An additional twist might be:
 $t`ROOT`9!$l`SUBJECT`0!($t`ROOT`3!)$l`OBJECT`1!($c`thing`4!),$l`VERB`2!

Which could match:

 ROOT

 / | \

 SUBJECT / | \ OBJECT

 / VERB \

 / | \

 ROOT (something) thing

 / | \

 : \ ATTRIBUTE

 .

There could be optional portions too, surrounded by []'s. E.g.:
$t`ROOT`9!$l`SUBJECT`0!($t`ROOT`3!),$l`OBJECT`1![($c`thing`4!)],$l`VERB`2

Pretty, huh?

Anyway, I think I am going to set out writing the parsing and pattern matching routines to implement this language. That will make some of the other goofy projects proceed much more quickly.
May 26, 1997
I implemented CC matching. It isn't exactly as depicted above.
There are three pattern types: L, l and c, for labels, links and children, respectively. The rules come out of the data file, and can be referred to by name. Furthermore, one rule can refer to another.

Here are some real examples:

define
cc_decl(1)

label

cc_decl1

rule

$L`Root`0$l`SUBJECT|OBJECT&cc_decl2`1$l`VERB`2

define
cc_decl(2)

label

cc_decl2

rule

$c`human(1)`4

This says that the label must be "Root", that there must be SUBJECT and OBJECT links, and that they must be humans.
The subjects and objects will be assigned to argument 1.

A VERB link will be assigned to argument 2.

The actual human will be assigned to argument 4.

It all works.
The trouble is that it is cumbersome to go back to the data file for each rule sub-element. Furthermore, it would be nice to be able to cast a pattern as a multi-level match, fully specified right within the routine using it (much like the pattern matches were in analyft). Accordingly, I think I am going to broaden the capabilities of CC matches to include nested patterns and inline definitions.
The above pattern could be:

 $L`Root`0$l`SUBJECT|OBJECT($c%human(1)%4)`1$l`VERB`2

There could be limitless nesting as well. All results will be returned on conchains.

June 1, 1997

I have added so much crap, I no longer recall what it is all supposed to do. The recursive rule mentioned above has changed a tad. The delimiting characters are & and ^. A real example of its use follows:
 rule
$L`Root`0$l`SUBJECT{&c^human(1)^4}`1$l`VERB`2$l`OBJECT{&c^toy(1)^5}`3

This line says that the CC has to have "Root" at the top, and that in addition to having a SUBJECT link, the subject also has to prove to be a child of human(1). Whatever CC satisfies both conditions get assigned to conchains 1 and 4 in the return list. The official name for this "{...}" construct is a sub-rule.
Just because the code was already written, I also re-enabled the link follow-on processing that invoked subsequent rules from the database, as described further above (except that '&' became '?'). An example:

define
cc_decl(1)

label

cc_decl1

rule

$L`Root`0$l`SUBJECT|OBJECT?cc_decl2`1$l`VERB`2

define
cc_decl(2)

label

cc_decl2

rule

$c`human(1)`4

Perhaps most importantly, I enabled a method for passing arguments into rule processing so that matches that look for children, etc., could take dynamic arguments. For example:
 rule $L`Root`0$lSUBJECT{&C^0^2}`1

The above rule says that the label at the top must be "Root," that there has to be a SUBJECT link, that upon successful fulfillment of the SUBJECT link, the associated CC has to be a child of whatever was passed-in as argument zero in the calling statement. The matching CCs are assigned to conchains 0, 1 and 2, with 1 and 2 receiving the same value.
 The calling statement might look like:

 struct concept *con;

 char *rulename;

 struct conchainnode **returnconchain;

 struct concept *parentcon;

 call cmatch_first(con, rulename, returnconchain, parentcon);

Variable con is the concept we are trying to match, rulename is the label that locates the matching rule or rules from the database, returnconchain is where the results from the matching rule(s) get strung together.

In this case, parentcon is the concept that will get substituted into the argument 0 spot when the matching takes place. Routine cmatch_first is called with varargs processing, so the number of cons passed-in at the end of the list is unlimited.
I should actually test all of this...
(...a little later) It works!
June 6, 1997
I added a primitive dream facility plus a routine to implement fixes to titular assignments, described on May 17.
June 7, 1997
Now, it is time to tackle prepositional phrases, and to start understanding larger concepts.
Brainhat already has the ability to parse some pretty complex sentences. I need it to be able to draw inferences. So, for instance, if I say "mario is outside. what does he see?", I want Brainhat to be able to draw on the environment; outside should be associated with sky, clouds, trees, whatever (tuned by the context as well...).
Likewise, I want leaps of judgement such as "mario likes the princess. he sees her. is he happy?" (probably, unless something else is making him sad). Also, it is time to pick a pilot project for brainhat. I think I will teach it how to run a lawnmower...
June 25, 1997
I finally got through most of the junk I had to do the last few weeks, including training for some Bell Atlantic folks down in Reston, VA, and some installations and consulting. I have the next week off. I hope to get some Brainhat time in. There are plenty of things to work on. Maybe the best thing to do would be to make it easier to cast routines for postprocessing, dreaming and speaking. That way I could more quickly implement different kinds of inferences and analyses. Thinking on the train the other day, I figured it might be nice to be able to generate one or two new routines per day--too difficult as it stands now.

June 28, 1997

Had a big Dowd cookout tonight...am burping up pickles.

I don't remember where the neatest next project might be, so I guess I'll finish the last one.

I had just added prepositions to a few of the routines.

Now I need anything that deals with attributes to deal with prepositional phrases--a special case attribute.
Something bugging me about orthogonality and elimination as I have it working now: If brainhat discovers that a ball is red, and then learns about one that is blue, it assumes that the two balls must be different; there is no mechanism for a ball to change colors, yet be the same thing.
Likewise, there is going to be a problem with prepositions.

A ball in the kitchen cannot possibly a ball in the bedroom... The only way to fix this is to draw a distinction between non-sequitor changes in objects, and changes coinciding with the passage of some event--an event that takes place in time.
July 1, 1997
I am working on check_orthogonal to make it cleaner, and to extend orthogonality checks to prepositional phrases.

I need to look for prepositions that mean the same thing (e.g. "in" and

"within", or "in" and "in" (for that matter)), find the objects of the preposition and check to see if *they* are orthogonal--probably by recursively calling check_orthogonal.

At some point, I need to cobble together routines that can check the orthognality of verbs, adverbs and objects. Take "Mario is the king. Mario is a peasant" for example.

Aside from its poetic nature, it is probably is not possible. Likewise, Mario cannot both be running and sleeping. And he cannot run quickly and slowly at the same time...
July 3, 1997
I am still inside of rels.c updating the routines that are there. In particular, I am reworking needwantscore to take account of prepositional phrases, and to be smarter in general.
Background:

Needwantscore is called by vscore whenever an ATTRIBUTE is discovered in a CC. The routine steps through all of the WANTS, REQUIRES and TYPICALLY links to see if the just-discovered attribute makes any of them happy. Up till now, the attributes were all simple--e.g. colors, sizes, etc. With the addition of prepositional phrases, an attribute can be a lot more complicated. Further more, a CC that wants something like "wet" as an attribute should be satisfied by a prepositional phrase like "in the water."

I have a lot of work to do...

Note to self: make RELATIVE assignments symmetric between CCs. Create routine lookfornot to check (quickly) for EMPHASIS equal to "not."
July 6, 1997
At some point, I need to make a new symbol table to track references to particular things. It would work like this: After normal processing of an input sentence (after vertical comparisons and comparisons to the context buffer had decided what the true components of the sentence were), and after addtocontext had run, I would the third symbol table with references to CCs in the context

buffer, related to particular "things."

A sentence like "mario sees the ball," for example, would first be unambiguoized (word?), the contents would be added to the context symbol table, and the whole CC would be strubg onto the context conchain.

In addition, another table using "ball" as the key would also point to the CC in the context. That way I could ask about all CCs referencing "ball."
 On another note: I am still working to improve the routines in rels.c. When checking for needs and wants (and eventually for other types of scoring), I feel that it will be important to look over the attributes of relatives and parents more carefully. Say that I say "Mario is the river." "Is mario wet?" The answer should be "yes." It could come from several places:
· I need to check the attributes of parents. In the case of "river," one of the parents could be "water," which would have the attribute "wet."
· Or, I might check relatives: Say that the relative of "river" was "wet" (an attribute). That would do it too.
· Or, if the relative is a "thing" (say water), then a check of the attributes of thing-relatives would also turn up the desired property.
 The one scenario I don't cover is the relatives of parents... should I?
July 7, 1997

 Whoops!

Routine needwantscore is for checking the needs and wants of more than just attributes--it is used to test subjects and objects too. Now I have broken it...
July 9, 1997
Fixed. I also added the ability for brainhat to answer where questions. It only took about 15 minutes, actually; I have enough building blocks that new features don't take as long as they used to.
The next things to work on are more general questions (e.g., "Does Mario see Luigi?") and hints or ponderables. A hint might, for instance, be associated with a preposition (in this case, with is the preposition): If "Mario is with Luigi," then a hint would say that "OBJECT is with SUBJECT." Or a hint could propose something: "If SUBJECT is in the hospital, then SUBJECT may be sick." What brainhat does to answer a "may be" hint is for further thought. Perhaps it will ask "Is the princess sick?"
July 10, 1997
Tonight (10:30, and tired) I am going to play with declarative questions. "Does mario see luigi?" This could be reduced to:
 VERB REQUIRES

 Root ----------- Root ---------- "see"

 / \

 SUBJECT / \ OBJECT

 / \

 Root Root

 / \

 / REQUIRES \ REQUIRES

 / \

 "mario" "luigi"

....perhaps.

The match would have to go against the context buffer, and eventually take advantage of another symbol table that would tag context buffer entries by the verb.
July 11, 1997
After some more thought, the simple pattern match above won't be sufficient. For one thing, it depends upon something being previously said about mario seeing luigi; there is no mechanism to infer that mario sees luigi. The next question is how do I infer...*anything*?
Taking "does mario see luigi" as an example, the following conditions might be sufficient:
· mario is in the same place as luigi (is with luigi)
· mario is not blind
· luigi is not hiding
· there is light
Each of these things is an attribute, which means each can be tagged to mario.
When do I decide when to generate a CC that says "mario can see luigi"? It would probably be a bad idea to generate one speculatively, since nobody may ever ask if mario can see luigi. Instead, I could associate "see" with some ponderables, like above, to be exercised at the time somebody asks: "can X see y?"
Furthermore, the ponderables could be recursive, executing other sequences of ponderables on their way to an answer. If all ponderables come back positive, then the answer will be "yes."
At the same time, there are some kinds of inferences that might be made in advance, particularly those that append attributes to things.

For example, when I say "mario is with luigi", a symmetric "luigi is with mario" might be appropriate.
Both ponderables and inferences will require a way to gather up tests within the input data file.

The tests should be nearly English:

define
sees(1)

label

sees

label

see

child

action

tense

present

related
saw(1)

ponder
X sees Y

test

X is with Y

test

X is a person

test

Y is visible
define
with(1)

label

with

child

preposition

wants

things

infer

X is with Y

test

Y is with X

Operationally, a "ponder" might work like this:

User inputs "does mario see luigi", or "if mario sees luigi, then <something>". The "mario sees luigi" part of a question gets cast as:
 sees

 / \

 SUBJECT / \ OBJECT

 / \

 mario luigi

This mates with the ponderable, "X sees Y" (I don't know how yet). From there, the tests get evaluated and a decision is made.
A little later... I know how to make the linkage between the question (does mario see luigi) and the ponderable:

The question gets parsed by the usual methods (a rule of type question. The result is a CC that states what the question is asking.

The associated verb(s) is located within the symbol table.

From the associated verb definition(s), zero or more ponderable rules (CC pattern matches) are fetched and compared against the CC created by the question.

For those ponderables whose CC rules match, the associated tests are conducted.
- CC's that survive all the tests become contenders
- A check against the context buffer picks the best.
- The winner becomes part of the context.
A few upcoming projects (after this is done) include a question buffer and a statement buffer--places to tuck CC's so that they can be uttered after processing is completed.

July 19, 1997

Reading through the above, I guess I would still like to be able to test statements "mario sees luigi" against the context buffer to see if they are there already.

This ought to come before any ponderable-based tests.

July 24, 1997

The "mario sees luigi" test against the context works!

Now, how do I implement the ponderables in existing data structures?
July 25, 1997
Name changes:
· What I have been calling ponderables will be called deductions.
· dreams will be ponderables
· and inferences will be inferences.
Now, to the task of adding deductions to CCs and CC processing: New data structures will be necessary.

I have to finish thinking the process through too.

For argument, say that the statement to be tested is "mario sees the princess." The first check goes against the context buffer, and if found, then a match will occur.
The statement can be looser too, such as "man senses woman" (from the question "does man sense woman?"). This too will test positive on the presence of "mario sees the princess" or "mario hears the princess" in the context buffer.
But let's say that there is no "mario sees the princess" in the context buffer.

Now the program has to deduce it.

define
sees(1)

 <stuff deleted>

deduce

X sees Y

test

X is with Y

test

X is a person

test

Y is visible

I had thought that I could search for the verb, sees in the basic knowledge symbol table and come up with an entry containing some deduction tests, like the above. The English statements shown above would have to be compiled using a compiler that doesn't exist yet. The true (compiled) forms would simply be CC patterns, ala:
define
sees(1)

 <stuff deleted>

deduce

$l`SUBJECT{&c^things^1}`0$lVERB{&c^sees(1)^3}`2$l`OBJECT{&c^things^5}`4

test

is ^1 with ^5

test

is ^1 a person

test

is ^5 visible

Hmmm... a better idea:

I will have already qualified the type of question, (e.g. "Can X verb Y?").
There is no reason to force the routine in charge of answering the question (declques, in this case) with testing the proposition (X verbs Y) against every deduction entry under the verb definition. Instead, I could assign each kind of test an identifier, e.g. QDECL (== 1001). That way, declques could 1) look up the verb in question (and perhaps it parents), and 2) search through the deductions to find one with the correct identifier (QDECL), and 3) run the tests itself. A few implications here:
1) each verb that uses QDECL needs to keep the same parameters, numbered the same way.

2) The routine that runs the tests needs to be flexible enough to be run from anywhere.

It may also ask questions of the user.

A different definition might look like:

define
sees(1)

 <stuff deleted>

deduce

QDECL

test

is ^1 with ^5

test

is ^1 a person

test

is ^5 visible

,where ^ corresponds to an argument number.

I need a new concept structure member, plus new data types for the tests. The data types will look like this:
struct dtest {

 int testtype;

 struct dtest *next;

 struct test test;

struct test {

 char *testtext;

 struct test *next;

};

};

July 28, 1997

Now, what shall I do about inferences?

Simple inferences might be of the form:

"If X is near Y, then Y is near X."

A more complicated inference might be:

"If X of class A exhibits feature Z after activity P, but Y of class A does not feature Z, then feature Z is caused by activity P."

Similarly, the deductions discussed above could be cast differently, ala: "if X is with Y, and X is a person, and Y is visible, then X can see Y"
July 30, 1997
 Argh! So many thoughts... such a little brain!
1) For basic knowledge, I need to add symbol labels to each symbols' text collection. That way, ball(1) could be known not only as ball, but also as ball(1). That way, I can cast very unambiguous statements, such as: "ball(1)-1023 is blue(2)-2932." I need this ability so that I can make brainhat evaluate deduction tests without having to go through the whole ball(1), ball(2)... ball(n) selection process.
2) I need to make use of TYPICALLY tags in statements like "trees are usually outside."
3) I soon need to start parsing basic causal clauses like:

"if it december, then it is winter"

"if it is winter, then it is cold"

(Gee, this looks like a challenge...)

4) I might want two-level symbol tables, wherein the first index a subject and the second is a verb. That way I could tie disparate CC's together, ala "The motion of the sea makes people vomit."

These sorts of observations can become part of the basic pool of knowledge. Here's some basic knowledge expressed as logical clauses, and stored under multi-level symbol tables.

This allows us to ask questions like "can mario see the stars?" A lot has to be true: mario has to be able to see, the sky has to be clear, it has to be nighttime, he has to be outside.
person[1] can see stars if the sky is clear, if it is nighttime, and person[1] is outside.
August 1, 1997
 I stopped part way through the July 25th ideas to give cause-and-effect basic knowledge some more thought. Statements like "a person can see the stars if the sky is clear and it is nighttime the person is outside" express a more specialized situation instance of "X sees Y" than "a person can see a thing if the person is near the thing and the thing is visible and there is light." Both are in the category "person sees thing." That means that there is some necessary ordering to way deductions are stored; the most specific deductions should be stored first. This could be done manually, by reading deduction clauses in in an appropriate order, or by sorting deductions automatically, after the fact.
 There are differences in the application of deductions too (some of this gets back to the difference between inferences and deductions). A deduction should be evaluated at the time the question is asked, ala "can mario see luigi?" But what if the deduction is learned during discourse (as opposed to during the time that basic knowledge is brought in)?

Maybe I should assume that if the speaker says something like "if the door is open then mario should go home", that it is important to the flow of the conversation, and should be evaluated.
 As for inferences, these should be executed whenever the combination of subjects, verbs, objects (whatever... haven't figured it out yet... in fact, it should probably be variable on a case-by-case basis) matches the candidacy test.

Likewise, inferences should execute whenever encountered in the on-going discourse. For clarity, an inference here means something that involves the verb to be.

An examples is: "if it is raining, and a thing is outside, then a thing gets wet."

The idea of the multiply-nested b-trees for storing deductions and inferences still appeals to me.

I have to work out the details.

Note that because CCs are hierarchical, it is reasonable to expect that more general cases (e.g. "man loves woman") will apply to more specific cases ("mario loves the princess").
August 4, 1997
 I am in Ogunquit, Maine with Paula and Ian. They are out shopping for basic stuff like shampoo and towels. The weather is overcast, and we haven't figured out what to do yet, save for buying baubles at chichi klatches.
 There are several brainhat projects to think about:
1) Come up with a good, general-purpose method for storing, retrieving and applying deduction and inference tests.
2) Produce the code that will read plain English and compile it into deduction templates and tests, and inference templates and tests.
(later)

After thinking about it, I have decided that I am on the right track with deductions and deduction tests.

One of the nagging sticking points has been "should I pre-compile the tests into CCs, or leave them in English (e.g. `is ^1 near ^5`), as above?" I decided to leave them in English because the tests can represent more than just patterns.

For instance, a test that asks "can fred reach the peddles?" will have to recursively invoke another cycle of deduction. Furthermore, it will be a good idea if the tests ask questions rather than make statements to be evaluated.
 I still need to finalize my approach to compiling deductions into the intermediate English-within-a-CC format.

The format I mentioned above still seems promising to me:

person[1] can see stars if the sky is clear, if it is nighttime, and person[1] is outside.
 As a part of divide and conquer strategy, I have decided to leave inferences alone until later.

Anyway, for now, I am going to finish up the deduction testing code already underway.
August 6, 1997
 I have the deduction testing code basically working.

The deduction tests are passed to find match as English

(e.g. "is mario happy?").

A couple of things need fixing:

1) There is no processing (yet) for questions that test equivalence or titular assignment. So, if I ask "is mario a man", nothing happens. I really need these kinds of tests in order to make deductions.
2) I added concept labels to the collection of text alternatives. For instance, "mario" is also known as "mario(1)." I did this so that deduction tests wouldn't have to search the whole potential space of "marios"; instead, a test could say "is mario(1) a man." The trouble is that the ()'s don't get through the text parsing portion of find.c. I either have to allow ()'s (and -'s) as part of words, or change the way the labels are encoded encoded and referenced (X's in lieu of ()'s, as a possibility).
3) Here's the biggest problem: text parsing (ala match_first) is a long way from the post routines that say "yes" or "no" to a deduction test. Furthermore, the normal processing that answers questions ("is mario happy") is geared to say something--typically "yes" or "no." In deduction testing, I have to float a question to brainhat, and then pick up the result on the other side. It's not an issue of how to make it work (at least initially); the problem is that I will be losing some of the independence, and hence some of the innate parallelism that exists within brainhat now: it will be easy enough to control speech with a global variable. And I can store a yes/no answer into a global variable and read it out when the test is completed.

However, in the future, whole bunches of code will be tied up as a deduction test takes place because global variables need to be persistent over large tracts of code, and this will be a problem.
 For now, I punt. Later, I have to work this out. .in 0

(later)

Okay, deductions work.

I probably need to ask questions when a deduction test comes up "maybe." Another thing to think about is how a deduction test could arrive at a "no" answer.

The tests being true is sufficient to make the outcome true, but the tests being false does not imply that the outcome is negative.
 One other annoying thing: I said something about the ball being red, and later asked if the ball was blue.

Brainhat said "the red ball is blue, yes."

Argh.

August 8, 1997

Lots to do....

I still need to make it possible for brainhat to use CC label text when talking about, say, mario(1). The problem is that the "(1)" part does not parse out as text; the ()'s are seen as delimeters. With several options to choose from, I may go through the basic knowledge collection, plus all routines specifying CC's by name, and change the likes of mario(1) to mario-1. I could pass the ()'s, but I will need to treat them correctly--as markers of parenthetic statements--later.
 I am going to modify travcon to take another argument: a recently-visited CC stack. This way I can tolerate small cycles in CC's by recognizing them and exiting them on the fly.

I have to have this kind of capability because, despite all of my attempts, cycles develop. For instance, when I am following a list of links that includes objects of prepositions, I can easily find a cycle in the following symmetric relationships:

"mario is near luigi. luigi is near mario."

The questions are: how many CC's should I keep track of?

Can I ever make the cycle tracking stack deep enough?

How much of a performance penalty will cycle checks incurr?

Perhaps a better answer is to add another member to the CC structure. It could point to a chain of intlinks. The idea would be that the intlink chain would contain tags corresponding to each individual travcon search (generated sort of randomly). The reason for using intlinks (as opposed to just a flag that says "this node was visited already") is so that I can one day multi-thread CC searches, and be viewing the same CC from several starting points, at the same time.
 Also, I am planning inferences... looking forward to it.
August 10, 1997
 I am breaking a lot of coding rules--setting global variables. The problem is that there is a chasm between the routines that parse speech, and others that evaluate it.

These changes are uglier than code I have been writing, and they threaten brainhat's parallelism. One good renovation would be to make the parsing routines (find, lookfor, compare...) return conchains.
 Anyway, I am working on making brainhat ask the questions that it can't answer while evaluating a deduction. I start out with the question ("is mario a man"), cast it as a statement ("mario is a man") kept in a CC, and squirrel that away. Then the original deduction test question is asked of the user: "is mario a man?" If the answer is yes, then the squirreled-away CC is added to the context.
 August 13, 1997
 It is going a little rough; I have been cutting too many corners.
 August 16, 1997
 The basic structure for deductions is in place. Now I want to turn to inferences, and decide how they should be handled. The first question is whether inferences and deductions are different enough that they actually need different mechanisms. I have been grieving over this a little bit, asking myself when either kind of processing might be appropriate. How about a few examples?
 If I say "mario is near luigi," I might then make the inference that luigi is near mario, and record it along with luigi's other attributes. On the other hand, I could leave it to a deduction; when somebody says "is luigi near mario?," a deduction that says "if mario is near luigi, then luigi is near mario" could execute.
 Where might I get into trouble if I treated all observations as deductions? Take "mario is with the princess." If "mario likes the princess", then the implication would be that "if mario likes the princess, then mario is happy when he is with her." Ergo, "mario is happy." Assuming that I asked "is mario happy," brainhat would have to go through

1) mario's attributes to see if he is explicitly happy (or unhappy),

2) the context to see if any other actions lead to mario's happiness. If everything was cast as deductions, I suppose a query like "is mario happy" could lead back through "if a person(1) is with person(2), and person(1) likes person(2), then person(1) is happy," and "is person(1) with person(2)..." and so-on. I guess that works.
 Okay, then. The projects for the near future:
1) Add parsing to brainhat to allow me to cast deductions in English, rather than building deductions specifically into CC's as I do now.
2) Add some better debug.

How should step one be approached?

What should a deduction look like?

I have some examples of generic deductions above...

It might look similar to:

"if thing(1) is near thing(2), then thing(2) is near thing(1)"
In contrast, a specific deduction would look like: "if mario is near the princess, then mario is nervous."
August 30, 1997
 Been kinda busy... In addition to the action items above, I have been grieving over how to handle deductions that have non-specified references in them. For instance, if I say "is a near b?", the question might be answered by a deduction that states: "if a is near x, and x is near b, then a is near b."

The problem is: how do I reign in the world of things that x could be? A sort of obvious approach would be to choose a vector (conchain) x composed of all the things that a is known to be near, and compare this with b near-things. The next question is how can I accomplish this computationally, and in a general fashion?
define
near(1)

 <stuff deleted>

deduce

QATTR

test

#2 list things near ^1

test

is ^2 near ^5

The syntax could end up being something else, but the general idea is that

I could have have the first statement generate a whole conchain of possibilities.

The second statement could test ^2 against each element of the vector ^5 for one that is true.
 It occurs to me that this might all best be accomplished by using the pattern matching facilities I have already created.
...later: I fixed up all the crappy code I was grieving over--the stuff that was saving values into global variables.

Life is better now.

September 1, 1997

I put the August 30th additions on hold for just a while so that I could finally put in some useful debug facilities. Here's how it will work: We start with a global intlink variable (this again breaks my notion of how a parallel brainhat should look, but in this case we are talking about debug... besides, the coding isn't going to be beyond repair.) Each link of the global intlink chain lists debug flags for routines or kinds of processing for which debug has been enabled. The chain could be zero-length, meaning that there is no debug, or it could be very long, meaning that many debug flags are turned on.
 Each routine or flavor of processing will be identified by its own flag, ranging from 1 to 1023.

Higher bits will be used to indicate that processing should stop at various weigh stations. The meanings are sort of arbitrary, but for purposes of putting a stake in the ground, I'll assume the following meanings:
 1024 (bit 10) == stop at the beginning.

 2048 (bit 11) == stop at location 1.

 4096 (bit 12) == stop at location 2.

 8192 (bit 13) == stop at location 3.

 16384 (bit 14) == stop at the end.

Each will be associated with a C definition flag, ala

#define START 1024

To enable debug (say for a particular routine... using addtocontext as an example), the user would say:
 >> DEBUG addtocontext
 To enable debug for addtocontext, and make it stop at the start of the routine, the user could type:
 >> DEBUG addtocontext+beginning
 Likewise, the user could cause the routine to stop in several spots:
 >> DEBUG addtocontext+beginning+finish
 Or shut it off:
 >> NODEBUG addtocontext
 These commands would be entered in the normal course of talking with brainhat. I addition to enabling and disabling debug at various points, the user can always ask brainhat to tell about the contents of the context buffer and general knowledge pool.

Examples:

>> LIST mario

This would, by matching the text, locate all of the marios and print a list.
>> DUMP mario-0293
Dump all of the mario-0293s, matching by label.
>> SPEAK Root-1475
The concept would be passed to the speaking routines for dissertation.

Additionally, the weigh stations provided within routines give the user a method to display the contents of specific conchains or concepts defined at the time the processing is stopped. So, for example, the user could examine the contents of the conchain passed into a routine, or look at an individual concept. The routines only handle one additional argument at present; the type (concept or conchain) can be decided by the user.

The following example will make it clearer.

Within addtocontext I might add a call at the top that says:

 debug (ADDTOCONTEXT+START, CONCHAIN, *chainp);

When processing drops into the debug routine, the contents of the conchain *chainp will be available for inspection. For instance, the user might wish to dump the conchain:
 >> DUMP conchain
 This would dump the contents of the optional argument (assuming it was a conchain) in concept format.

Another possibility might be

>> SPEAK conchain

Or perhaps:

>> SPEAK concept

This would apply if a concept was passed in.

In cases where no optional conchain or concept is passed in, the call should read:

 debug (ADDTOCONTEXT+START, NONE);

Likewise, the return passed back from the debug routine can be used to trigger inline debug. An example might be:
 if (debug (ADDTOCONTEXT, NONE) == TRUE)

fprintf (stderr, "addtocontext: here is some debug.\n");

The first "0" signifies that the debug routine is not to pause processing, but just return TRUE if debug is enabled for addtocontext.
The second "0" means that no optional arguments are being passed in.
September 3, 1997
 (on an airplane coming back from Baltimore...) I was working on the rules to match debug commands when I ran into a snag:
Since I modified the pattern matching routines from analyft for use in brainhat, I haven't had a good way to perform boring old pattern matches.

That is, the pattern matching routines are good at assembling CCs from speech, and passing them back as conchains. What's missing is a value that says what matched--which rule, which in turn maked the routines less useful for parsing general input.
 I had an idea for a new kind of pattern for find.c--one that would simply pass back an integer or a text string.

After the other components of the match succesfully complete, I could just check the integer to determine which rule was the winner (assuming, of course, that each rule involved uses a different integer). The new pattern is going to be type "K". Here's an example: $K`1000`9!$A0 $N1
This would match a character string, followed by a space, and then a number. The $K construct would match everytime. The value, 1000, would be returned in argument 9 (as a text string).
September 3, 1997
 I'm going to change my approach on debug a little bit. Rather than have it so that debug commands are part of brainhat's normal repertoire, I have decided to make them a special set of commands, parsed by more traditional methods. Entry into debug mode will be made by telling brainhat to "break" or "debug," or by hitting a previously arranged breakpoint. In a sense, the debug routine will just be a form of brainhat post processing.
September 6, 1997
 In fact, entry to the debug routine will require that DEBUG be placed in the debug intlink at the start of the program.

This way, the debug routine's handling of explicit entry into debug mode (by asking brainhat to "break" or "debug") will be no different than hitting a pre-arranged breakpoint. Accordingly, the first entry into the debug intlink chain will have to be for the debug routine itself.

Consequently, it will be possible to delete the debug routine from the intlink, and thereby disable asynchronous debug altogether.
 That and Princess Diana and Mother Theresa both died. And we had lamb chops tonight at the beach house.
September 7, 1997
 I added a bunch of debug capability. Type "help" in the debug routine to get an idea.
September 8, 1997
 I fixed an annoying problem tonight--well, at least I identified one. And it's partially me. I have recently started to depend on sentence matches returning pointers to the root of a parsed CC in arg[0]->text.

The trouble is that they don't always do that.

In this case, I wanted to match "yes-1", which is defined as a "sent"(ence), which is a subset of "csent," which is a subset of "ccsent," which is a subset of "sentences." By the time the answer, "yes", worked its way up to "sentences," it no longer appeared in argument 0; it had moved elsewhere. Anyway, I went around the issue for now by making the definition of the single sentence, "yes", be a part of "ccsent" (which stands for complex-complex sentences).

September 11, 1997

I have been thinking more about deductions for attributes ala' "is x y?", where y is an attribute. This is currently implemented for known attributes (adjectives and prepositional phrases). I need to slip in the ability to run deduction tests, as well as the ability to compare known attributes.

The current tests work like this:

A statement such as "is mario happy?" generates a CC that looks like:

 mario

 \e

 \e REQUIRES

 \e

 happy

This is individually combined with single attributes to form a conchain of permutations, e.g.:

 mario mario mario

 / \ / \ / \

 / \ REQUIRES / \ REQUIRES / \ REQUIRES

 / \ / \ / \

 ugly happy glad happy smart happy

Then, by virtual of vertical matches, the best one is selected, and becomes the answer.
 Now, I want to add deductions to the process. The best way to proceed appears to be to insert a post routine before pullattrs (the routine that creates the permutations above), and run some deductions against the SUBJECT and REQUIRES fields.

REQUIRES can index me to a family of attributes.

From there, I can find the attribute tests in a manner identical to that of declques. Note that the structure returned from the match is a vector. Accordingly, I may be running the attribute tests against a number of subjects with the same name--cat (feline), cat(feline from context), cat(cool dude), etc...
September 14, 1997
 I implemented deductions for attributes. It works, though it tends to blow up pretty easily. I guess I shouldn't be surprised. For instance, given a couple of simple deductions 1) x is near y if y in near x, and 2) x is near y if x is with y, intersected with the permutations of x and y (from the knowledge pool vs. from the context buffer, for instance) gives me a deduction storm.

A simple question takes a long time to answer.

Sometimes I run out of memory.

I had to use cyclechecks to make sure that I didn't get into loops (x is near y if y is near x if x is near y). Even so, I'm not convinced that they are working.
 On the bright side, I really like the recursive nature of the deductions.

I can ask some simple questions that make brainhat do a lot of thinking. For instance, I have a deduction test that says that "a man is happy if he is near the princess." When I ask "is mario happy?," brainhat checks to see if they are near.
 I need to figure out a couple of things: What's the best way to avoid deducing an attribute if I can easily find the attribute in the concept's links. As it stands, I preprocess deductions before I even dredge the links.

Likewise, I need to record attribute deductions into concepts as I deduce them. After all, if they are worth deducing once, then they are probably worth remembering. Last, I need to start using not so I can record "no." I guess I need to start using "maybe" as well... to avoid repeated deduction tests... hmmmm...
(later) I need to run chooseone before the deduction tests, I think. Accordingly, I need to give CCs that come from the context an extra bonus point so that they are preferred over boring basic knowledge pool cons. Also, I wonder if the copied text-label (e.g. mario-1) associated with each con is being used for cloned cons too...?

September 17, 1997

I skinnied down the processing associated with deduction tests by succesfully using chooseone to pick the best question to ask, rather than asking all possible questions and choosing the best answer.

A little project: I need to fix processing of the sort:

"what shape is the blue ball." As it is, this questions makes shape a requirement, but doesn't require that the matching ball be blue. Lots to do...
 Also, I have to limit brainhat's ability to ask dumb questions; its like a little kid.
September 20, 1997
 Currently, questions about attributes (is mario hungry) or title assignment (is mario the king) are answered in the following fashion:

First, brainhat makes a clone of the subject with all of the attached attributes pared off.

The one attribute we are testing for (hunger...for instance) is appended to the clone with REQUIRES as the link type. Then, brainhat builds N more clones from the first clone--each with a one (or two) of the subjects original attributes attached.

These clones are then subjected to a survival-of-the-fittest test; the clone that best satisfies the REQUIRES link and fits best into the context becomes the winner.
Though this is an interesting way to formulate an answer to the question "is mario hungry," it isn't the most efficient.

It may not even be better than some other methods.

But it does work, and it was the first method I chose--partly because I didn't have any way of doing CC pattern matches at the time.
 Anyway, I think it is time to re-think the method. For one thing, I would like to be able to ask if mario is hungry by looking directly at mario. Only if direct inspection doesn't provide the answer do I want to run deduction tests. Furthermore, I want to be able to squirrel away the answers generated by deduction tests in those cases where I have to run them.

So, if I learn by deduction that Mario is hungry, I would prefer not to have to deduce it again; the attribute should become attached to mario. Besides, I would have a problem re-ordering the inspection/tests and squirreling away the answer using the current method because the question becomes consumed by the clone-making process of the current method.
 In short, I am going to re-work the way attribute and titular assignment tests are evaluated.
September 21, 1997
 Gee... that last fix took about 6 lines of code. I also made it so that once a deduction test succeeds, the result is immediately added to the context.

September 23, 1997

I have been going back throught the code, patching up "not" processing. I fixed orthogonality tests so that attributes with "not" as an attribute wouldn't be orthogonal to much of anything. Now I am working on attribute (and other) tests. Here's a question: how do I make attributes which bear a "not" EMPHASIS link compare to other attributes?

For example, a ball which is not red should compare (sort of) favorably to one that is blue. Likewise a man that is happy should compare to a man that is not sad.

I guess what's common here is that both are orthogonal along the same axes (blue and red are orthogonal on "color", and happy and sad are orthogonal on "mood").

Let me try coding it that way...

October 7, 1997

I was distracted for a while by work.

We (atlantic) entertained a huge firewall deal.

In fact, it was so big, it was too big.

The customer liked us, but wasn't fond of our simulated facilities. Anyway, the whole affair took a lot of my time.
 I don't know if it is a function of the other work I have had to do, or whether the question of "nots" is such a difficult one. I haven't thought of a good (clean) way to change what I have right now to handle "nots" as EMPHASIS tags well in comparison. For instance, it would nice to say "the ball is blue. is the ball blue?" and get "No, the ball is not blue" as an answer.

As it is, I get "yes, the ball is not blue" because a blue ball favorably compares with the question.
 I have decided to punt (to borrow a phrase from a sport of some sort): I am going to eliminate "not" as an emphasis tag. Instead, I am going to tie ORTHOGONAL links either to a dummy ATTRIBUTE tag or directly to concepts. Analogous considerations will be made for orthogonal "things" and actions.

That way, "is the ball blue" will be knocked out early by orthelim or some such nonsense.
October 10, 1997
 That didn't really work either. But, I did settle upon something that I am happy with for the time-being: I look at an attribute (or whatever). If I find a "not" EMPHASIS tag, I remove all the ORTHOGONAL directives. Then I add a single ORTHOGONAL directive: I make the concept orthogonal to itself.

I also leave the "not" emphasis tags intact.

When finished, the attribute (or whatever) compares unfavorably with itself, but favorably with everything else. That way, a ball can be "not blue" and "red" at the same time. The last trick (which I haven't implemented yet) is to modify yesno to look for attributes (and stuff) that are orthogonal to themselves, or that carry not attributes, and swap the answer from "yes" to "no," or vice versa. That way, a question like "is the ball blue" can come back with an answer like "no, the ball is not blue."
Later... I implemented a crude ability to tell brainhat which deduction test questions it can ask.

Deduction tests that are indicated by "test*" (in lieu of simply "test") will be asked of the interlocutor.
October 12, 1997
 I have decided upon a good demonstration scenario for brainhat: it will take the role of a curator of a museum piece. I have a statue that I bought at Mr. Amazing for 67 cents. Somewhere alone the way, the head got knocked off. brainhat will be told some fiction about the statue--where it came from, how old it is, what the value is, specific features, and so on. Only, brainhat won't be told that the head is missing. That way, when people start asking questions about the piece, they can see how brainhat learns and adapts when it "stumbles" upon the information that the piece it is describing is not what it believed it to be.
 On another note, I have been planning cause-and-affect processing, particularly cause-and-effect questions. "Why did mario kiss the princess?"
 Step 1) Look into the context for cause-and-effect and try to answer directly (mario kissed the princess because ...).
 Step 2) Check the context buffer to see if mario kissed the princess. If he did, speculate why (go through deduction tests in reverse...).
 Step 3) If we don't know that mario actually kissed the princess, ask for reinforcement ("did he kiss the princess?");
 Step 4) If the user insists that mario did, speculate some more. If the answer is unavailable, then say "I don't know" (somehow).
October 15, 1997
 Thinking about cause and effect statements that end in attribute assignment, it occurs to me that I need to give special treatment to the attribute that is assigned. Currently, an attribute assignment ("mario is happy") attaches an ATTRIBUTE tag "happy" to mario; the verb, "to be," gets collapsed. The problem is that if I use the same kind of attribute assignment in a statement like "mario was happy because he saw the princess," the result will look something like:

 Root

 / \

 CAUSE / \ EFFECT

 / \

 Root mario

 / | \ \

 SUBJECT / | \ OBJECT \ ATTRIBUTE

 / | \ \

 / | princess happy

 mario | VERB

 |

 saw

The trouble is that if mario has any other attributes tagged to him, it will be impossible to tell which is associated with him seeing the princess.

For all we know, mario may be fat because he saw the princess...
 The fix is going to be preservation of the verb "to be" for cause and effect statements.

October 31, 1997

Long time away... very busy in the office...

I have to make the virtue of being from the context buffer (as opposed to being from the basic knowledge pool) a bonus point. That way, when chooseone chooses the players for use in an attribute or declaration tests, the winners will have some history to them--they already will have seen the princess, perhaps.
 (a few minutes later)
 Scratch that: the context test was already in rels.c. The trouble was/is that the test thresholds for goodness and badness need to be moved around; I upped the bonus for being from the context, and my troubles went away (for now).
November 1, 1997
 I have a lot of work to do here. I only sometimes get the answers that I am hoping for. I need to make up a test suite, and get brainhat to behave before I implement the many outstanding projects.
November 8, 1997
 Again, too much time goes by... Note to self: need to make a sentence like "mario is happy because he is near the ball" work. The issue is that "he" doesn't get resolved to mario (necessarily).

It might just remain as "he" in the completed CC, or it might be the last subject encountered.
November 10, 1997
 Working on answering "why" questions.

I decided to make attrques and declques record not on the findings of a deduction (e.g. "mario *is* happy"), but to also record the successful tests that lead to the conclusion. Using CAUSE and EFFECT tags, the context will show that "mario is happy because he is near the princess and because he is a man."
 November 13, 1997
 I decided to work on vertical scoring again--essentially I'm planning to rewrite vscore and needswantscore (in fact, the latter may not exist when I have finished). The problem is that there isn't enough distinction between "yes," "no," and "maybe" when I am asking brainhat questions.

Furthermore, there is no investigation of orthogonality within vscore.
As an example:

 mario

 / \

 REQUIRES / \ ATTRIBUTE

 / \

 happy sad

The above CC should evaluate very poorly because sad is orthogonal to happy, and happy is required. It's actually remarkable that the code doesn't treat this correctly considering all of the work that went into recognizing orthogonal concepts...

Furthermore, I need to take more steps to see that vertical scoring of other--non attribute--kinds of CCs works okay.
 Root

 /| \

 SUBJECT / : \ REQUIRES

 / \

 mario mayor

This might be part of a CC (a question in this case) about whether mario is the mayor.

Hmmmm.... this actually works right now.

I'll have to go see why.

As has been the case with other issues, I may have already solved the problems of testing for titular assignment, but forgotten all about it.
November 14, 1997
 I was making changes in the vscore routines. A problem occurs to me: I probably don't want to use the exact same routines for scoring that I do for selecting. In the case of picking questions, for instance, I want the scoring routines to choose CCs that are topologically "close." I might have:

 mario

 / \

 REQUIRES / \ ATTRIBUTE

 / \

 happy sad

Taken as a question, the answer should be "no."

I don't want the question to get pared though; the evaluation of orthogonality should come much later.

I think that I will create a routine like ORTHELIM, except that it links a "not" onto a CC and makes some component orthogonal to itself. In fact, I have already done this... I just have to remember where it is (it couldn't have been more than a month or so ago).
November 16, 1997
 Still lots to clean up! I fixed some problems in needwantscore that occurred as a result of my rewrite.

Things look better now, though I need to look over prepositional phrases within both attrques and check_subneed. Also, I still have to create the routine mentioned in the Nov 14th notes.

One other note: I created a post routine called parequires to clean the REQUIRES links out of stuff being sent off to the context buffer. I subsequently decided I didn't need it. It should be pared itself if no use arises.
November 17, 1997
 (Aboard a plan on its way to Toronto) I am debugging attrques.c for cause-and-effect processing of prepositional attributes.

It's coming along.

One thing I really need is a way to step through the context buffer to see what's there. Accordingly, I am going to add a little bit more to the debug routines later. Nap now.
 Now, I'm sitting in the Sheraton lobby, waiting for a room, or for the Systemhouse people.

I just went to their building, but reception was locked up. Anyway, back to debugging cause and effect for prepositional phrases, I got this from addtocontext:
define
Root [1521]

cause

mario-1-0555

effect

Root

define
mario-1-0555 [1104]

label

mario

attribute

Root

child

male-1

child

man-1

define
Root [1532]

tense

present

objprep

luigi-1-0552

prep

near-1-0553

The problem here is that the cause is in the form of a "thing" with ATTRIBUTEs attached.

It needs to be a sentence with a form of tobe as the glue. Otherwise (for one thing), speech routines will be interested in expressing the sentence as a simple statement of attributes, rather than a discussion of cause-and-effect. Should be easy enough to fix...
 Now it's 10:30. I just ate a bunch of meat. Now I'm back in my room, which is remarkable because it isn't a bedroom at all.

Rather, this is a "parlor"--one of the hospitality rooms that salesmen use to liquor up clients. And the bed isn't a bed at all; it's a sleep sofa. Tonight I'm going to rest my head on the same cushion that people farted into just a few hours ago. On the plus side, there are oriental rugs, a chandelier and my own hutch with untouchable dishes.
November 23, 1997
 I need a routine that more generally looks for parent/child relationships like those discovered in vrfy_child.

Particularly, it needs to understand hierarchical prepositional phrases.

For example, a routine that recognized in the river as a subset of in the water would be nice.
 Such code is already implemented inside of orthogonality routines. I could also use it inside of why2, and as a CC pattern match primitive (like $C or $P). I think Ill write that soon, but not this instant.
 Ah, heck.

Maybe I will write it now.

November 27, 1997

Thanksgiving! (burp).

I am playing with a routine called vrfy_achild that tests concepts to see if they have a child/parent relationship. The routine is like vrfy_child except that it will hand simple prepositional phrases. I plan to use this capability within cfind to implement a new companion to $C or $P.

The new pattern will be $Z.

One thing I have to go back and do to finish my re-work of the scoring routines: I have to make it possible to score a "no" again. Currently, anything that isn't a resounding "yes" is a "maybe." The trick is to use orthogonality tests inside of scoring routines.
Also, I have been playing with some X routines so that I can get a graphical debug window into brainhat.

Oooooo! The other thing I can do is eliminate all deduction tests relating to simple prepositional relationships!

The fact that mario is near the princess when he is with the princess can be discovered via $Z.
 Hmmmm.... something seems broken. I say "the block is blue" followed by "what color is the toy" and I get some serious dead air.... goodnight for now.
December 1, 1997
 (At Dulles airport) Hmmmm... did the above ever work? I'm not sure I ever spent the time to look into it. I think that I have some kinds of parent/child attribute testing in explicit, patter match tests.

I don't think I look through the context to find good candidates for children of "things" to match questions.

I need a routine to go through the available "things" in the context and retrieve the first child match So, for instance, if I say "the ball is blue", "what color is the toy", brainhat will pick the best/nearest candidate in the context buffer.
 This routine would operate at a low level--on atomic CCs, such as things or attributes.

Once find has retrieved all of the "toys", for instance, this new routine would look through the list of CCs returned to see if any are from the context buffer (they could be just from the basic knowledge pool). If not, the routine would crawl backwards through the context looking for the first child of the CC, and add that to the list. The new routine will be called qacands for "QA Candidates."
(later)

I created a routine, qacands.

It does what I hoped it would do.

But it breaks other things..... working in it.

(later, in the plane home)

Looks good now.

Next project: implement orthogonality test mentioned on November 14. It should run just before yesno, or thereabouts. (turbulence).
December 6, 1997
 Just getting back to things. I am sitting in bed next to Paula. I have a belly full of food from Mom and Dads'; Greg cooked some veal cutlet patties.

December 7, 1997
The routine for checking orthogonality in conjunction with yesno will call the routine check_orthogonal which is already used by orthelim. Along the way, I plan to do a little bit of work on check_orthogonal to make it a more flexible and better routine.
 The new routine will be called orthanswer because of its use in conjunction with answers to questions. If orthanswer finds that a CC has some components that are orthogonal to themselves (say a REQUIRES turns out to be orthogonal to an ATTRIBUTE), then orthanswer will stick a "not" in there, and (somehow) cause vscore to answer "no."

December 12, 1997

I just fixed requirewheres.

It was broken.

Next, I need to make declques signal a strong score when it finds that the answer to a question is "yes." (fixed).
 Now I need to make orthanswer (and orthelim) notice the present of a "not" to make a thing orthogonal to itself.
December 14, 1997
 I have hit a little snag with orthogonality testing. I could bash my way out of it with brute force, but I don't want to uglify the code too much, so I'm thinking it through. Here's the problem: check_orthogonal has a clause that says don't compare an attribute with itself ("self" is indicated by the tag component of the concept structure type). This would be the right thing to do where a CC has, say, a REQUIRES link and a matching ATTRIBUTE link. Imagine, for example, that the CC looked like:
 ball

 / \

 REQUIRES / \ ATTRIBUTE

 / \

 red red

 \ \

 ORTHOGONAL \ \ ORTHOGONAL

 \ \

 color color

In a vertical score, this CC would fair very well--a "red ball." If check_orthogonal got a hold of it, however, it would see the REQUIRES and the ATTRIBUTE as orthogonal, and declare the CC a misfit.

Accordingly, check_orthogonal isn't allowed to check concepts against themselves.

The trouble begins when I want to use the capability of routine attrnot to make a concept orthogonal to itself:

 red red

 / \ / \

 ORTHOGONAL / \ EMPHASIS ORTHOGONAL / \ EMPHASIS

 / \ / \

 color not red not

Now I might want to check a requirement against a modified form of the attribute:

 ball

 / \

 REQUIRES / \ ATTRIBUTE

 / \

 red red

 \ / \

 ORTHOGONAL \ EMPHASIS \ ORTHOGONAL

 \ / \

 color not red

Nevermind the fact that the orthogonality checking code is too broken to perform this test correctly.

I still want the ability to have the above pattern to be both a high vertical scorer, and orthogonal.

This way, I will be able to say:

the block is red

the block is not blue

is the block red

the block is red

yes

is the block blue

the block is not blue

no

That seems simple enough.

Anyway, the question is how do I get what I want.

I'm working on it.

(later)

I changed orthanswer_a so that it doesn't investigate orthogonality along REQUIRES links. I also changed the rules for check_orthogonal in the data file so that REQUIRES links aren't tested there either. That's step one. (It now becomes critical that the same attribute never shows up twice in the same tense).
 Step two will be to see that a concept can be better tested for being orthogonal to itself. Eventually, check_orthogonal will need to take into account the parentage of orthoganality cadidates, just as every other kind of test does at this point.
 I got tired of this tonight, and left things kind of broken.

I don't yet have a way to say "the ball is not red. no"

Also, for some reason, "mario is not glad... (a bunch of stuff)" ends up with the "not glad" attribute being struck from mario. Hmmmm...

December 20, 1997

Well, I had to think about orthogonality testing for a while. I'm not sure that I'm finished thinking about it, but I have arrived at a few changes/improvements.
 In addition to worrying about "not" cases, I also wanted to look into situations where there are parents and children who, if not considered for their lineage, might be flagged as orthogonal. For example, the concepts of "red" and "pink" are related--pink being a child of red.

Likewise, "pink" and "scarlet" are related to one another by their co-descendancy from "red."

Consider that it might make sense that a REQUIRES for "red" matched an ATTRIBUTE of "pink."
 The table below shows some test cases where orthogonality should or shouldn't be applied.
Laying examples out in a table this way helped me a lot; thinking about it from first principals never got me very close to a solution.
	color1
	color2
	orthogonal?

	red
	blue
	yes

	red
	not red
	yes

	blue
	not red
	no

	not red
	not red
	no

	red
	pink
	no

	pink
	scarlet
	yes

	blue
	pink
	yes

The test case participants might look like this:

 o red o blue o pink o red

 / / / / \e

 ORTH / ORTH / ORTH / ORTH / \e EMPHASIS

 / / / / \e

 color color color red not

Generally :

 o X o Y

 / /

 / ORTH / ORTH

 / /

 o o

 A B

The new guidelines for determining orthogonality might be:

if X == Y, if Y is orthogonal to itself XOR X is orthogonal to itself, then the concepts X and Y are orthogonal (this could happen because of attrnot). Otherwise, not.

if X is a child of Y (or vice verse), then skip the orthogonality checks; X is not orthogonal to Y.
otherwise, check for orthogonality as before--based upon ORHTOGONAL tags and matching TENSE.
(later)

This all seems to work okay.

I made one change--replaced the XOR test with a simple OR.

I haven't done the same kind of work for prepositions yet; I'll do that some other day. The prepostional phrase processing is in check_orthogonal, just below the simple attributes.
December 20, 1997
 A thought: maybe I could get the rest of the world to help develop

brainhat by making the following basic licensing conditions:

1) the product must be license for use (cheaply, I suspect).

2) Others are invited to enhance brainhat in exchange for a share in the revenues.
December 25, 1997
 Christmas. I had to have Maddie put to sleep yesterday. Makes me very sad.
December 27, 1997
 I have been doing a little bit more thinking about the problem of teaching brainhat causal relationships between things. The program already knows how to use inferences to decide things (ala "mario is near the princess, mario is a man, therefore mario is happy"). However, it doesn't have a mechanism for compiling causal templates

(such as "if a man is near the princess, then a man is happy"). Furthermore, brainhat has no mechanism for storing and retrieving inferential sequences.
 elements

 1\ 2| 3/

 \ | /

 v v v

 ())

 (hash fn)

 (()

 \

 \

 __V__ deduction

 (_____)repository

 QATTRS, || | --------

 QDECLS, || | <---- | |

 future types || | <---- |compiler| <-- "deduction" english

 (_____) <---- | |

The picture above captures the kind of processing I see going into this. Starting at the top, the hash function is a way to store and retrieve deduction tests, given "elements" (such as man, near, and princess.)
There are some specific requirements:
permutations of elements should all take one to the same place; elements {1,2,3} should give the same result as {2,1,3} (I can achieve this by sorting before hashing..., I suspect).
 Furthermore, hashes of fewer elements have to retrieve the same deduction tests as hashes of a larger set of elements. A {1,2,3} sequence might need to hash to the same place as a {1,2} sequence--and hash to some other spots that {1,2,3} doesn't hash to as well! I suspect I can make this work by merely having certain deductions appear in multiple spots in the hash function range. The question is: how demanding will this be of storage resources?
 I already have QATTR and QDECL deduction types implemented, and they work quite well. Currently, both deduction types are stored within the basic/context knowledge pools. For instance, the word near-1 has a deduction that says "if a is near b, then b is near a."

Ultimately, near-1 would end up having the same deduction associated with it, though it would be accessed via a hash on near (probably not on the more specific near-1, though).
 QATTR and QDECL have fixed argument pointers associated with them--e.g. the subject is always argument #4.

This won't change for now either--just not important enough at this time.
 The compiler portion will be an extension of the compare routine within find.c. I talked about some of this some months ago, and now I need to pull the pieces together. The first rule is that the compiler needs to be able to handle plain English, ala
 "if mario is near a woman, then mario is happy."
 Beyond that, it must handle more tightly specified cases using an extension to English:
"if man#1 sees man#2, and man#2 is committing a crime, then man#1 will be angry."
 And I have to work in the transitive cases (see August 30, 1997):
 "if man#1 is near something#3, and man#2 is near something#3, then man#1 is near man#2"

The syntax could change a lot.

Figuring out what it should be is part of the job.

Anyway, here's the assignment:

· Extend compare's functionality with a deduction compiler.
· Create a deduction repository.
· Create a general hash function to both store and retrieve deductions.
Once all this is working, I need to direct my attention to tenses.
December 29, 1997
...more thinking: if I work on pronoun processing a little bit first, I might be able to avoid creating any special brainhat English. I might instead be able to specify deductions like this (the goal):
if a person is near a place, and another person is near another place, and if the two places are near each other, then the first person is near the second.
 How's that for ambitious?
December 29, 1997
...even more thinking:

Deductions are currently stored as simple English hypothesis. Here's an example taken from data9.in:

deduce

QDECL

test

is ^0 a person

test

is ^2 a thing

test

is ^0 near ^2

This is take from sees-1, and helps brainhat decide whether the subject represented by argument 0 can see the thing represented by argument 2. I chose this form back in July because I was interested in leaving the deduction tests in English, rather than choosing a context for the deductions at the time they were compiled.

Leaving them in English allows ambiguity in interpretation, which actually could be kind of fun. A declaration about a "cool cat" could be applied to a feline or a beatnik, for example.
 The argument in favor of CCs is that they are already in a form that

cfind can use--in the form that find is going to cast them into upon interpretation of the entered English. Futhermore, the context of CC-based set of deduction tests could be tuned by statements that come before it, ala:

mario has eyes to see

if mario is near something, then he can see it

mario likes to see people

is the princess is not busy, the mario can see her

The two meanings of see can be tuned by statements that precede simple deductions.
 Anyway, I can't guess which form would serve better--English deduction tests, or deduction tests embodied within CCs, so I am going to use both.

I think that CC-based tests will be more elegant (after all, the goal is to get brainhat to store thoughts in an internal form). They may be easier to use as well. On the other hand, English based deduction tests are more ambiguous, and they're already implemented (so it costs little to keep them). I simply need to devise a method to hash into both types of tests.
January 1, 1998
 More thinking: the right way to do this is to use CCs for deductions.
January 3, 1998
...of course, the trouble with that idea is that I would have to rewrite all the code that currently deals with deductions... so I am going to use the English tests alone for now.

January 9, 1998

Ross is sleeping here in front of me, on the kitchen table (in a bassinet). He was born at 5:51 on Monday morning. It's Friday now. Going well...
January 10, 1998
 I'm making some good progress toward casting statements that offer propositions into deduction tests. I had a random thought that I wanted to record regarding choosing keywords for the hash function: say I make a statement like "if thing1 is near thing2 then thing2 is near thing1." My plan is to make "thing1" and "thing2" (and other similar words) part of the basic knowledge pool, so these sorts of propositions are easy to pose to brainhat. However, I don't want the deduction keywords for the hash function, or the deduction tests themselves to be cast in terms of "thingn." I want them to be cast in terms of the parent, things. Accordingly, I am going to check the participants in propositions to see if they have children ("thing1" wouldn't).

If there are no children, then the deduction tests will be cast and hashed in terms of the parent(s)--in "thing1"'s case, this would be things. And Ross is sleeping here in front of me.
January 17, 1998
 I created a routine called qcomp--a more general replacement for a previous routine qattrcomp that only compiled attribute statements.

Also, I created a new label (class) for sentences that make simple statements, such as "mario sees the princess" or "the ball is round" (the label is "simple-statement").
 Non-sequitor note: I have to eliminate spaces as legitimate tokens in input... no need for them to be significant.
January 18, 1998
 I have completed the first portion of the code that casts propositions into deduction tests. I was thinking about the hash function that will be used to locate deduction tests to help brainhat answer questions. I am planning for the hash to drop me somewhere into its range. From there, I will walk through the available deduction tests until I find one that answers the question at hand. But what if, along the way, I find some deduction tests to answer a question that I didn't ask? The routine in charge of answering the question (say qattr or qdecl) return with a false victory.

What this suggests is that I need a mechanism to pass a list of tags along with the hash.

The tags (which form the basis for the hash, by the way) will have to not disagree with a set of tags stored along with the deduction. They won't have to agree particularly--just not disagree. This will serve to verify that the deduction test fetched via the hash is one appropriate for the question being asked.
 It also occurs to me that work done to hash deduction tests should also be re-used to make the context buffer associatively addressable. It would mirror the way that people think....
January 19, 1998
 I envision a few routines and structures:

/* global:

*/

#define DEDUC_HASH_SIZE 1000

struct dtest *dhash[DEDUC_HASH_SIZE];

/* a routine to set all the members of dhash == NULL:

*/

void init_dhash();

/* a routine to store something into dhash:

*/

store_dhash(tags, dtest_chain)

struct intlink *tags;

struct dtest *dtest_chain;

/* a routine to find things in dhash:

*/

struct dtest *fetch_dhash(tags)

struct intlink *tags;

January 21, 1998

Along the way to completing deduction tests, I created a new parent/child hierarchy call "enablers."

It includes "can", "did", "will" and so-on.

January 23, 1998

Dospeak and a new routine called doask now sprintf into a buffer, rather than spitting their results to stdout.
January 25, 1998
 Time to describe what I have been up to: brainhat can now compile conditional statements like "if x then y" into deduction tests and use them to evaluate questions (is y?). The deduction tests are stored and retrieved by a hash function that takes the modular sum of the tags for certain components (e.g. the subject and verb) into a hash table range.

At present, only declarations (x verb y) are completed, though it won't take long to do simple attributes and prepositional attributes. At some point, I have to go back and update the new routines (including qcomp and statetest) to work with titular assigments as well.
 A couple of problems/questions accompany the work I did this weekend: only some compound propositions compile correctly. If I say "if <attribute-stmt> and <attribute-stmt> then" it works. If I say "if <decl-stmt> then ..." it works.

But if I try to use two decl-statements, it fails in the pattern match somewhere. This needs fixing.
 I need to think about the way that propositions are abstracted from the more general case to the more specific. A statement like "if a man sees a woman then a man is happy" should be useful for questions like "is mario happy?"

I have a few more days of implementing propositions ahead of me. Then I have to go back and implement why to go along with why2 (which is done).
January 29, 1998
 I was working on why.c tonight. I was successful making it dump core... I showed brainhat to Cherie and Howard yesterday. Cherie may help me pull a demonstration together. I guess its time to write a rudementary user's manual.
February 4, 1998
 I am in Philadelphia International airport.

I just finished working on why.c.

It ran one test case without bombing, which means that it is practically all the way through QA.
 I have been enjoying the minor leaps of faith that brainhat has begin to make as a function of its ability to store and evaluate inferences. A single conclusion can involve many different individual observations--each trivial--to arrive at a delightfully insightful conclusion. This is the multiplier effect that I have been long awaiting.
 A number of projects are ahead. Many of them have been spec'd out or hinted in the pages above, and many have yet to be investigated. At the same time, I need to think seriously about documentation. Cherie has shown an interest in developing some test scenarios for brainhat. For that, she is going to need a programmer’s manual! I am going to get started on the programmer's manual now.
February 7, 1998
 Ross is here, lying on the floor. He was (of course) happy until I started the computer; now he needs attention.

Anyway, I have been doing some work on a programmer's manual. At the same time, I have been thinking about how to make brainhat see the bigger pictures in things: goals for the actors, and ways to tie a narrative (based upon the temporal nature of things) together.

Ugh: Ross crying.

Later...

(Back)

Anyway, I think that it can be done relatively easily.

I just have to do some work on tenses so that brainhat can discern an order to events, and understand future imperfect phrases. Consider, for example:
 if a thing1 wants to see thing2 then thing1 must get near thing2

 mario wants to see the princess

 how can mario see the princess?

There is a lot of brand new processing here--stuff I haven't given much thought to. That's what I am going to start grieving over.
Projects:

1) the enablers (such as "did", "can", "does", "would") carry tense in them that is currently being ignored. I need to extract the tense from enablers when present and push it onto the nearest verb.
2) I need to handle split other uses of the verb "to be", as in "will mario be happy?"
3) I need to investigate abstraction of sentences like "if a man is happy then a woman is sad" to more specific cases, ala: "mario is happy. is the princess sad?"
4) I need start thinking about making brainhat evaluate things that "could be." Probably, I'd do this by creating a context in front of the real context, such that all that is known can be added to those things that might be.

5) As mentioned above, I need to make tense work better, and make brainhat be able to perceive a passage of time while reading a narrative, or reciting one back.

6) And I have to make all the changes I had meant to get to regarding the proposition tests.
7) I need to be able to build on the basic knowledge pool by making statements about things that brainhat has not yet heard of.
8) I need a catch-all parsing rule or rules that can try to understand an utterance in a form brainhat is unfamiliar with.
February 13, 1998
 mario sees the red ball
 does mario see the blue ball
 This needs fixing.
February 15, 1998
 The problem requires a little thought. First of all, saying "does mario see the blue ball" generates a CC template that says "mario sees the blue ball." This is a new ball to brainhat; ORTHELIM will have completely stripped references to the aforementioned red ball.
Next, declques gets a hold of the CC (mario sees blue ball) and compares it to the contents of the context buffer. The only things that really have to match are {mario, sees, ball}. Accordingly, declques scores a hit on "mario sees the red ball." To make matters worse, declques adds REQUIRES tags to the matched pattern so that vscore will find it extra-tastey when it comes time to evaluate the result. Anyway, the answer comes out "mario sees the red ball, yes."
 The fix is pretty simple: fish into the pattern that matches the question "does mario see the red ball" to find any attributes for the subject (mario) and the object (ball) and make them part of the CC template that searches the context buffer. Only one coding/functionality extension will be necessary: when pattern and arguments are passed to cfind, check to see if the arguments are null pointers, or if they point to the empty CC. If they do, then the patterns will need to WMATCH, but return empty as the result.

February 25, 1998

(In Baltimore)

I have been working on a NIST Advanced Technology Proposal for brainhat.

My first pass through the technical arguments didn't satisfy me; the proposal must show some strong technical barriers... I've already passed a few of them. Anyway, I have decided that maybe the technical challenge I will pitch in getting brainhat to scale appropriately. The folks at NIST have seen a number of prototypes, and have worked on speech processing themselves already. However, the scalability question is an important one--can brainhat (or anything else) scale? This also fits my credentials better than the "can I make a machine think" approach. The proposal will presuppose that making a computer think is the straightforward part :-).
 Also, I wonder about a GaAs surface in a vacuum. Could it lase on the front side in a fashion augmented by carrier currents on the surface. This could make the basis of a great 2.5 dimensional display.
March 8, 1998
 Well, I have decided to scale my plans back a tad. The NIST proposal needed lots of budget, goal and planning estimates that I haven't given sufficient thought to. At the same time, brainhat is starting to feel a little tangled to me. I've been here before: I need to assess what I have and make its implementation more deliberate. This is in-turn will make it easier to debug and easier to explain to others.
 brainhat needs a few additions as well: i need a hash mechanism for finding things in the context buffer; i need some real virtual memory management; i need to assess propositions more efficiently. And I need to do all the little projects that I said I would do so long ago.
 Here's a little thought: the man with two watches isn't the same as a man with one watch. What's the difference? They could be the same person at different times. Or they could be different people. The only way to tell is to note a change that would cause the one man to gain a second watch. And if that happened, then the man with two watches could be no longer known as a man with one (?)
 Maybe possession should be an attribute? After all, the man who has a watch is the man with a watch. And he could be with one watch in the past, but with two in the present.

Another subject: for declarative questions, such as "does mario see the princess," perhaps the verb reference (see) should be pushed up to a parent (to-see). That way, I can say "yes, mario sees the princess," using the right case--using \getbesttense (or whatever the routine I am thinking of is called).
March 11, 1998
 Propositions with prepositional phrases as their consequences seem to be

broken.

"if mario is on the phone then mario is in the office" is broken, for example.
March 19, 1998
 I fixed it. Next, I will make brainhat climb from children to parents when evaluating a proposition. So, assuming that the proposition is

"if a person is on the phone then a person is in the office,"

a statement like "mario is on the telephone" will correctly generate the assumption that "mario is in the office."
March 24, 1998
 I am on jury duty, waiting to be (not) selected. Actually, I was interviewed earlier today, but didn't pass the test--too opinionated, I guess. But there's a dictionary here, and I picked up a couple of new words: nutation (rocking of the head), nostrum (an unproven medicine), conation (inclination), and carminative (a medicine to cause expulsion of gases from the digestive system).
Anyway, the question is: how should I go about investigating rules for the more general case of "if a person in in the phone....?"

I need to look around a little bit to see what else I have done; I spend too little time on brainhat to remember all of the details.

(later) What I might do is create a new data type that is a ...
April 3, 1998
 Inside of attrques.c and declques.c are short loops that choose where the deduction tests aregoing to come from.

Here's an example:

 for (m = 0; m < 2; m++) {

switch (m) {

case 1:

 d = attrcon->dtest;

 break;

case 0:

 key = make_hkey(2, args[0]->con->tag, args[3]->con->tag);

 d = fetch_dhash(key);

}

The variable d is set to point to the start of the deduction tests--first for the tests that come from the basic knowledge pool, and then for the tests that are compiled as brainhat runs. The problem is that the tests are for the concepts in question alone. However, their parents need to be considered too. I have been greiving over how to make this work. In desparation, I am going to create a routine that compiles a list of all PARENTs (or children, or whatever) of a given concept onto a linear list.

Loops like the one above can test the gazillion possibilities from the list, all at once.
April 17, 1998
· if mario sees a ball then mario sees a block mario is near a ball does mario see a block
<disaster>

Some kind of bug to fix here...

April 24, 1998

Got past that.

The next challenge is to figure out why this hurls off into an endless loop:

· if a person is on the phone then a person is at a desk

· if a person is at a desk then a person is in the office

· if a person is in the office then a person is in the building the princess is on the telephone luigi in on the telephone is luigi in the building is mario in the building.
April 27, 1998
 Got past that too. In both cases the cure was make better use of cycle tags. At this point, brainhat is doing pretty well on the office scenario.
Two major area need work:

1) I need better "not" processing.

2) I need to work on tenses (as I have said many times before).
May 7, 1998
3) I need to look at CC evaluation again--both vertical and horizontal.
 I would like to think about negative and positive vertical evaluation again. At this time, a CC can only come up positive in a vertical scoring. This makes sense as REQUIRES links and WANTS links are satisfied. Orthogonality processing, on the other hand, got pushed out of the scoring, to be run by itself later on.

The problem was that I needed questions that invoked orthogonal answers to score well. For instance, a question like "is the ball blue" matches well with

"ball" and "color," though it might fail to match the ball: "no, the ball is red."
 If I allowed orthogonality to invert the score (make it negative), then I could hang onto the magnitude of the comparison, yet give it some direction as well.

Anyway, I will need to look at the places where scoring is used and see if this would be a helpful change. Also, I need to work the scoring routines over again; they remain pretty sloppy.
May 8, 1998
 And while I'm busy saving the universe, I'd also like to start thinking about replacing text-based deduction tests with CC-based deduction tests; they're so just oh much prettier.
 I also need to start thinking about how to reduce the number of permutations for each CC evaluated. A statement like "mario sees the ball" generates 32 potential candidates (mario-basic, mario-context, sees-basic, sees-context,...).

More complicated expressions generate 100s of potential candidates. Perhaps I could evaluate parts of candidates (like a verb or a prepositional

phrase) as the candidate CCs are being assembled.

Also, I need to create a hash for CAUSEs in addition to the existing hash for EFFECTs. That way I can generate deductions without actively asking "is x y?"
May 10, 1998
 Thinking a little bit more about the way to cut the numbers of candidates down, I could create a routine that goes through all permutations to select the ones that are most "interesting."

An interesting candidate would be (first) one that is composed primarily of concepts taken from the context buffer, and (second) one that is "different" from the others.

Assume that brainhat knows about a blue ball.

By selecting interesting combinations, a phrase like "the red ball" could come up with several possibilities:

 o ball-3432 o ball o ball

 / \ \ \

 ATTR / \ ATTR \ ATTR \ ATTR

 o o o o

 blue-0e34 red red red

The one on the left is interesting because it will have an orthogonality problem; "red" and "blue" won't be compatible. That may be okay--I may be looking for a CC with orthogonality (as in "is the ball red?"). The middle one could be a ball that is red. The third could be a communist gala with music and dancing.
 The question is: how do I computationally polarize these so that they look sufficiently different from one another, and how do I choose which ones get to survive? Perhaps I could tell which one is the most customized by counting the number of its members in the context buffer. From there, I could choose combinations that are orthogonal or completely unrelated--all the while clinging as close to the context as possible.
May 12, 1998
 (Currently, in Philadelphia Intl. Airport; just paid a visit to GMAC). Giving the above ideas a little more thought, I need an algorithm for

deciding which CCs are interesting enough to get included into the mix. Anything I do will be less good than including all possibilities--from a completeness point of view.

However, it will help a lot with the explosion of CC permutations.
· Choose the CC with the greatest number of CCs from the context buffer. Move it to the head of the conchain.
· Make a list (starting with the second CC in the conchain) of nodes that are poor matches for the first position.
· Make a list (starting with the third CC in the conchain) of nodes that are poor matches for the first and positions (and so on).
· Continue likewise until the remaining nodes aren't sufficiently different from whatever else is in the list already.
 "Not sufficiently different" can mean that a CC scores pretty well against another CC--that no matches are zero or less (perhaps). Certainly, orthogonal CCs should compare poorly, as should completely unrelated concepts.

Good pattern matching will depend on good horizontal scoring.
 Screech! Bug! .nf the princess is near mario is mario happy .fi Some kind of problem here. If I ask in pieces, ala: .nf the princess is near mario is mario near the princess is mario happy .fi \&...I get the right answer. It has to be a problem with cycletags. I have been trying to make up cycletags based upon whatever CCs I have lying around. Perhaps I need to get smarter about where I find cons to add tags to.
(later) It turned out that cycletags were implemented on top of intlinks, and the intlink "value" structure member was a "short." Anyway, after the tag value exceeded 32767, the cycletag routines exploded. Sheesh--brainhat is a pig.
May 22, 1998
 I am working on a post routine called polarset. It's job is to eliminate not-so-different possibilities from a conchain, and thereby counter the explosion of permutations I get whenever brainhat looks at a statement, or evaluates a question.
 polarset will pick the most context-rich CC on a conchain, and make it the head of a new results conchain. Then, one at a time, other CCs in the original conchain will be compared to all CCs on the results chain. Its final score is the lowest of the individual scores. In a given pass, the candidate with the highest score wins. However, if the score is lower than 1000 points, the candidate will not be added to the results chain, and the process is complete.

Scoring is as follows:

· candidate CC gets 50000 points for being orthogonal to the to-be-matched CC.
· candidate CC gets one (1) point for every constituent CC that is a member of the context.
· candidate CC gets 1000 points for every constituent CC that is different from the CC in the corresponding position in the to-be-matched CC.

May 25, 1998

A little change in the above algorithm:

first I will sort the passed-in chain so that its members proceed from the most context-rich to the least.

Then I'll skip the context-concept count for each of the elements; if I know they're in order, then I also know that the most context-ful candidates will be considered first.

May 31, 1998

More (slow) thought:

two CCs in comparison aren't guaranteed to have identical elements in identical spots. I had coded a side-by-side comparison, but this assumes too much. Anyway, the new algorithm is:
· sort in favor of context-rich CCs.
· look for elements of CC "A" that are not part of "B" (one level down). Score 1000 pts for every mis-match.

· check to see if "A" is orthogonal to "B". Score 50000 pts.

June 7, 1998

Polarset works.

I'd like to go back and revisit the way deduction tests are handled. I *really* think that they should be CCs, and not text. An assertion like "if mario can see the princess then mario is happy" should create a CC:
 o

 / \e

 CONDITION / \e CONSEQUENCE

 / \e

 / o X1

 o sees \e

 / \e \e ATTRIBUTE

 SUBJECT / \e OBJECT \e

 / \e o happy

 / o princess

 o X1

The wildcard X1 would be filled in when the tests are evaluated. This is similar to the kludgely method by which a deduction is already evaluated; the substitutions appear as "^1", etc. in the text-based tests.
 In the new method, each set of deduction tests would be located via a hash (as they are now).

To differentiate multiple hashes into the same bucket, the template CCs would be cross-checked against a list of suitable CCs (parents) for each of the wildcards.
 The advantage to this method is that the CONSEQUENCE can be arbitrarily complex. I could, for instance, make the consequence be that mario is not happy.

I have no way to do that right now...

All that being said, I am going to put off the project for the time-being, and come back to it when I have time.
 Memory allocation is another future project. The program mallocs memory like a rabbit in heat. I think that I will handle it differently in the future. All calls to malloc will be replaced by calls to a shim (say bhalloc) that will record the starting address of each malloc. At the end of a cycle (a question or statement), programs like addtocontext will remove those memory elements that are to be saved from the list. Everything else will get "free()'d".
 Last, I need to have another kind of statement--different than a declarative or attribute statement.

Instead, I need a way to tell brainhat to do something--a directive. So, for example, I might say "if the user asks about the statue then explain the history of the statue."
June 12, 1998
 Consider this statement:
 If mario is available then I can talk to him.
 The assertion that p -> q doesn't necessarily mean !q -> !p. Because a given utterance carries a great payload of assumed and implied facts, it may not be correct to say:
 If I cannot talk to Mario then he is not available.
 Perhaps I have a throat polyp. Or maybe he is in New Jersey.
June 14, 1998
 I have am revisiting a problem that I ran into some time ago. It has to do with the positioning of prepositional phrases.

Consider:

1. the red ball is round

2. the ball in the wagon is round

3. the round ball is in the wagon

4. the ball in the wagon is on the block

5. is the ball in the wagon ?

6. is the ball round ?

7. is the ball in the wagon round ?

8. is the ball in the wagon on the block ?

Prepositional phrases (treated as attributes) may appear in different spots than simple attributes.

Prepositional phrases can appear on the right where simple attributes might be on the left.

The forms that I process now are 1,3,5,6,

If I extend the notion of a complex attribute so that number 2 works, then number 5 suddenly breaks.

This is because the noun and attribute change grouping.

The meaning goes from:

 ball

 \

 \ REQUIRES

 \

 o Root

 / \

 PREPOSITION / \ OBJPREP

 / \

 in o o wagon

to:

 ball

 / \

 ATTRIBUTE / ?

 /

 o Root

 / \

 PREPOSITION / \ OBJPREP

 / \

 in o o wagon

The fix (as it appears now, over Ross' teething cry) is to separate attributes into different sets with common parents. The ccattr can continue to exist, but the constituents--attr-prep (or whatever) and attr-simple will have to be called out differently in different places.

csubobj needs to break down into simple-attr subobj prep-attr.
The object of the preposition in prep-attr can be simple-attr subobj, but it must not be csubobj. Maybe the combination simple-attr subobj should have a label, like simple-subobj.
 To make things more complicated, there are forms like:
 the red ball in the wagon is round
 What I have to do is print out data9.in and figure out how to split and apply the different attribute types.
June 26, 1998
 Now, I need to look into tense...
June 30, 1998
 I pulled together a web demo for brainhat. Rick found a java terminal emulator. I glued together a chroot'ed login connecting brainhat to a login (on this laptop). I pre-load the demo with the statue scenario. I've decided to cosmetically hone the demo a tad.
 I'm also looking at implementing a "how" question. A question like "how big is the statue" asks the emphasis on the attribute.

July 6, 1998

We are in Cresent Beach, renting the Flanigan's old beach house. I haven't really decided what I want to work on brainhat-wise, though there are a lot of possibilities. I have half a mind to attack the project of replacing test-based propositions with CC-based propositions (the way it should be...). I also need to work on tenses (still). And I want to clean up the way brainhat talks, to make a better demo.

July 10, 1998

I added apostrification (?!) to the speech capabilities. Ownership is simply a prepositional ATTRIBUTE; there wasn't all that much to do.
 On the way, I broke some of the general capabilities. I have action verbs kind of glommed together, such that words like "see" and "sees" are all the same concept. In order to make speech more appealing, and in order to do a better job with TENSE and NUMBER, I split a few of the verbs up, which caused problems elsewhere.

For instance, if I say "mario sees the ball", followed by "does mario see the ball", the answer comes back "maybe."

If I ask "does mario sees the ball," then the answer is "yes."

This used to work better when "see" and "sees" were the same concept.

The trick is figuring out how to make general verbs work both for understanding and for speech.

I have an idea that I want to try.

It will result in a little bit of foundation reconstruction, but I think that the result will be useful both for the verb problem, and for other problems as well.
 Here's the idea: A CC like "mario sees the ball" looks basically like this:
 o Root

 /|\

 SUBJECT / | \ OBJECT

 / | \

 mario o | o ball

 |

 | VERB

 o

 sees

Suppose the "Root" section carried the NUMBER and TENSE. Further suppose that the verb was an all-tense, all-number variant of "to see." It would be used for "see", "sees", "saw" and so on. Consider that the meaning would be clear regardless of the tense; "mario see the ball", "i sees the block" all work.
 Underneath the catch-all, superverb would be SUBFORM links that had the appropriate NUMBER, TENSE and PERSON for each form of the verb. Then, at speech time, the verb selection could be pulled from the subforms. Processing of "tobe" verbs sort of works this way right now.
 For fun, I am going to save a brainhat image, and attempt the subforms.
July 14, 1998
 I implemented state for declarative verbs and questions. I actually did it differently than describe on the 10th. There are no SUBFORM links. Instead, I created an infinitive form for each VERB, and linked the individual PERSON, NUMBER and TENSE (TNP) combinations below them.
 When a statement, such as "mario sees the ball" is understood, brainhat pulls the TNP from the SUBJECT and VERB, and tacks them onto the Root. The VERB then gets promoted to the infinitive, and stored

 Root TNP

 o---- - - -

 /|\

 SUBJECT / | \ OBJECT

 / | \

 mario o | o ball

 |

 | VERB

 o

 to see

When a question is asked, a similar process takes place: the

VERB gets promoted to the inifinitive before matches into the context buffer commence.

I also eliminated a few lines within declques.c where

I had tacked REQUIRES tags onto matching CCs to make them score well in yesno.c. Instead, I wrote a post routine (called reqpnt) to make the correct PERSON, TENSEand NUMBER a WANTS tag. I also increased the value of SATISFIES_WANTS to 67 so that the PNT triplet would score over 100--the current yes/maybe threshold used bye yesno. This needs more work.

I think that PNT processing should have its own score values, but I am reluctant, as ever, to add more complexity to brainhat.
 On more thing: I wrote a little bit of code to pull the TENSE from enablers, such as "did," "does," etc.

The post routine (enabletns) is meant to follow the routine that pulls the tense from verbs (pulltense).
 Along the way, I noticed another huge blemish with text-based propositions, as I have them now: I can't embed TENSE into the consequence. For example, I cannot say "if mario is sad then the princess will be happy."
 Immediate next projects include making the following statements work: "what does mario see?" and "who is happy?"

Today, maybe.

(later)

I need a new text pattern template that will allow me to substitute a concept inline at the time the pattern matches--similar to the $K construct I made up for debug. This new construct might be used as so:

rule

where $c`tobe`0! $r`csubobj-prep`1 $s`proximity-1`2

I could use this to bias the template in favor of prepositions that talk about local proximity. That way, I could avoid getting answers like "the statue is from egypt" when I ask "where is the statue." The answer I want is "the statue is in a museum"
 Another idea that occured to me today: I might like to split the notion of the verb tobe into two separate types--those that express permanence, and those that express transitory states. Like the forms of tobe in romance languages, I could use these to differentiate between statements about objects that trigger orthogonality, and statements that will server to push the program's timeframe forward.

An example of a (semi)permanent feature might be color:

a ball cannot be both red and blue.

Accordingly, the mechanism that identifies orthogonality, and thereby declares that the blue ball and red ball must be different can continue to work as it does now. The placement of the ball, on the other hand ("the ball is in the river" versus "the ball is in the kitchen") could signal an advance in time.
 Another example is mario on the phone--first available, now occupied. When I say that the mario that was available previously is busy now, I am (incorrectly) creating a new instance of mario. What I want to do is advance time. Of course, to do that I need a better implementation of TENSE. Maybe tomorrow.
July 15, 1998
 I implemented $s, as described yesterday, and applied it to sentences of the form "what does x verb?" Works great!
July 19, 1998
 It occured to me that I could choose whether to clone an thing based upon an orthogonal attribute, or whether to advance time as a function of the placement of the attributes. Looking at back-to-back sentences "the red ball is round; the blue ball is oval", I am clearly talking about different balls.

Consider: "the ball in the kitchen is red; the ball in the bedroom is blue". Again, two balls. But what if I say "the ball is in the kitchen; the ball is in the bedroom"? Now, we have an advance of time.
 Also, I need to add the pronoun "they."
July 24, 1998
 I need to create a buffer to contain brainhat utterances, such as "the ball is red." That way, I can answer the question "why?"
July 27, 1998
 Done.
July 31, 1998
 How to do "not's" on decls? I created a class of ENABLERS called not-enable. By virtue of the presence of these, I glue a not EMPHASIS onto the decl root with a new routine called gluenot. Now, I need to recognize the not in processing the concept, yet depend on the ENABLE tag for finding the right enabler to voice when it comes time to talk. Hmmm.... sounds a little clunky. Maybe I should make similar enablers (WOULD + WOULDN'T, CAN + CANNOT, etc) children of the same parents, and then descend upon the appropriate choice.
August 2, 1998
 I am doing more thinking about how to organize verbs for handling and speech. Let's say I am looking for an appropriate verb. I might dip down into the children of the infinitive looking for a TNP (plus "not" complement, or TNP+) match. If I don't find it, I can look don't into the enablers for an appropriate choice (based on TNP), and then pair it with the third person singular form of the verb.

A few examples:

TNP+

stand-alone

w/enabler

_

past, sngl, 3rd

saw

did see

present, sngl, 3rd
sees

does see

present, plural, 3rd
see

do see

future, sngl, 3rd
-

will see

etc.

Also, something I said the other day was wrong: I don't depend on the ENABLE tag for determining the TNP of a verb.

The TNP from the ENABLE is pulled into the root by pulltense.

After that, the ENABLE can be deleted.

(later) Problem:

"are mario and the princess sad" results in a core dump.

August 6, 1998

I released brainhat with the changes mentioned above.

I also split up data9.in.

Now, I have decided to work on replacing qcomp.

August 12, 1998

I should be paying bills.
I decided that I don't yet know how to save the universe with respect to propositions.

I still haven't found an elegant solution for propositions such as "if a is near b, and b is near c, then a is near c."

I can think of inelegant solutions, but I'd rather wait it out.
 As a first step, I am going to undertake the important, messy, and potentially liberating step of undoing text-based deduction tests. As it is, deductions are stored in English (for no good reason). Likewise, the results of the tests are implied by the types under which they are stored QDECL, for instance, implies a present tense declaration, which requires both a subject and object, and assumes the verb under which the deductions are stored).
 Furthermore, text-based tests can generate nearly non-sensical internal deduction tests. These result if answers of neither "yes", "no" nor "maybe." A non-answer then causes a segmentation violation. As an example, the recreation of the test embedded in "if i cannot see the head then the head is missing" gives me "can the speaker not can see the head". I could make this parsable (I should... as part of goal to understand basically everything).

But better yet, why not leave the test as a CC in the first place.
 The new thing:
 CONDITION, CONDITION,..., CONSEQUENCE, CONSEQUENCE

 | |

 | |

 \ /

 ---qcomp---

 / | | \

 COND./ COND CONS \ CONS.

 +tags/ +tags +tags \+tags

 / | | \

 / | | \

 hash hash hash hash

 / | | \

 cons-> cons-> cond-> cond->

 cons-> cons-> cond-> cond->

All CONDITIONS and CONSEQUENCES will be stored as CCs. Each group will hash into its own table. In the tables, the tags will be replicated so that the hashes can be verified when subsequently accessed (because different sets of tags may generate the same hash).
 If you hash into a CONSEQUENCE, you will find pointers to the associated CONDITIONs. These would need to be evaluated (as they are now) to determine if the CONSEQUENCE is true. Likewise, if you hash into a CONDITION (one might do this while speculatively computing possible CONSEQUENCEs), you will find pointers to the associated CONSEQUENCEs. I expect that the computation for the CONSEQUENCEs will take place anew; one won't assume that since the CONDITION was found, the CONSEQUENCE must be true.
 I will need some structures to replace the dtest structures I have currently. These will have references to the tags and CCs of the

CONDITIONs and CONSEQUENCEs.

struct conseq { /* Consequence */

 struct conseq *next; /* Next hash possibility */

 struct intlink *ttags; /* Tags that made up the hash */

 struct conchainnode *tests; /* A set of tests for the condl */

 struct conchainnode *outcomes; /* A set of outcomes */

};

struct condn { /* Condition */

 struct condn *next; /* Next hash possibility */

 struct intlink *ttags; /* Tags that made up the hash */

 struct conseqchain *conseqs; /* Chain of possible conseqs */

};

struct conseqchain { /* Pointer to consequences */

 struct conseqchain *next; /* Next possible consequence */

 struct conseq *conseq; /* Pointer to one of N conseqs */

}

The structures above capture it.

Within the CCs that make up the tests or the consequences, there will be common references to other CCs. In the current scheme, the references are resolved in text as the tests are evaluated. For example, a proposition that says "if a man sees the ball, then a man is happy" creates a test that says "does ^1 see the ball". The ^1 gets substituted for argument #1 as passed from qdecl. I need to dynamically make substitutes of a similar nature within the CCs. Needs thought...
August 19, 1998
 I guess I have to do the same kind of thing for CCs: The CONDITION needs to identify its relationship to each of the critical elements of the CONSEQUENCE.

So, a statement like "if a man sees the princess then a man is happy" needs to generate a CONDITION like:

 o

 /|\

 SUBJECT / | \ REQUIRES

 / | \

 / VERB \

 / | \

 o o o happy

 ^0 is

This in turn needs to have its wildcards substituted on the fly.
August 20, 1998
 If only I had more time... Well, I don't. So I decided to chop this job down into manageable-sized chunks: .nf \(buChange qcomp so that it produces modified CCs for each of the CONDITIONS, and hashes and stores these along with each CONSEQUENCE. The modified CCs should:

a) have concepts that match components of the CONSEQUENCE (the VERB, NOUN, etc.) be replaced with argument substitution markers (such as "^1"). This is the CC equivalent to the way it is handled with text-based tests now.

b) promote any constituent concepts that have no children to their immediate parents. This is how I will be able to tolerate placeholders like thing1 that make their way into the deduction tests (by which I mean CONDITIONS). An example: "if thing1 is near thing2..." any thingn that gets through unsubstituted will be replaced by a simple thing.
· I need to fix the hash table for CONSEQUENCEs, and create a new one for CONDITIONs.

The hash routines need to be more general too, so that they can accomodate arbitrary hash ranges.
· Provide a routine that can clone CCs a couple of levels deep. This will be necessary because I may need to substitute constituent concepts several levels down. Substitution in-place would destroy the CONDITIONS.
The other idea is that I could fix up the text-based tests one more time and shelve this whole silly sub-project for a while.
August 22, 1998
 My hard drive blew up. And I'm fixing the text-based tests because I'm not man enough to recast them into CC-based tests. That, and I can't find much spare time lately.
 One problem I am grappling with is how to pass the "not" from a question like "can mario not see the ball" up to routine yesno. Going into declques, the parts that are pulled out of the question are the SUBJECT, OBJECT and VERB. Leaving declques, the result is either a clone of something from the context, or the product of a set of deduction tests (which goes into the context). I have to tack something onto the clone leaving declques that I can identify in yesno.

How about REQUIRES "not", tacked to the root?

(later) it ended up being a WANTS "not."

August 23, 1998
Not processing now seems pretty good for declarations.

And I can use negatives within the CONDITIONS of deduction tests. So, for example, I can say "if a man does not see a ball then a man is happy."
 Now, its time to revisit "to-be" sentences. Particularly, I want to explore applying TNP methods to "to-be" sentences, as I did with declarative sentences. Furthermore, I want to take advantage of enablers. This will make processing of sentences like "mario will be happy," or "will mario be happy?" work. Here, as you can see, "be" is taking the role of the infinitive.
August 24, 1998
 The steps involved:
· Currently, "to-be" questions return the subject (say, "Mario") with all but one ATTRIBUTE (if there is at least one) pared off, and a REQUIRES tag bearing the desired attribute (say, "happy"). The VERB (a form of to-be) carries the TNP. I want this to behave more like declarations: As is the case now, the REQUIRES will remain after attrques is done with the question.

The TENSE of the question will be glued to the root with WANTS tags.
This will compare to the TNP of the ATTRIBUTE (which will be pulled into the root). Accordingly, a yes answer will depend on a match of TENSE, plus the REQUIRES tag. A "no" will be the result of a "not," introduced by orthanswer, or some other routine. The trick is to make the combination REQUIRES + WANTS equivalent to a "yes," but have either alone be too weak to generate a "yes." Likewise, a "WANTS + WANTS + WANTS" combination has to result in a

"yes."

Simple math (I have a degree, you know) says that "WANTS + WANTS = REQUIRES". As a side requirement, quantities YESANSWER, WANTS and REQUIRES all have to be large enough that I can still have tie breakers (e.g. RELATED) to help make the most pleasing among the mediocre CCs stand out during those times when I am trying to choose from among similar CCs. Anyway, I have to adjust all of the weighting, which by itself is rich with peril.
· There really is no practical use for the verb "to-be", except in understanding and speaking. Within the stored CCs, TENSE is carried in the ATTRIBUTEs, NUMBER and PERSON are in the root (the SUBJECT). At some point in the past, I started to make use of SUBJECT-VERB-ATTRIBUTE combinations, though I don't recall why at the moment. Anyway, whatever it was, the usage probably needs to be preserved.
· Negative questions have to pull a WANTS

"not" into the root, as they do with declarative questions.

Right now, I am going to try adjusting the weights, and see what trouble I stir up.
(later) I have some more work to do on pullattrs.

Also, I need to make a ddquestion pattern that matches a question like "is mario not sad."
August 28, 1998
 Some time ago, in order to simplify templates in propositions (e.g. thing1 and thing2), I created a routine parent. parent is used in creating hashes for propositions. Its job is to look at a CC to see if it has any children. If the CC does, then parent simply returns the tag for the CC. If not, it returns the CC's parent's tag.
 I did this so that I could have (say) multiple direct children of things that would be distinguishable in a proposition (e.g., thing1 is not thing2). Yet at the time the hash for retrieving the proposition was created, I wanted to be sure that I thing1 and thing2 would be stand-ins for parents of all things.
 o things

 /|\

 / | \

 man o | \

 | \

 toy o \

 / \ o thing1

 / \

 ball o o block

Consider that thing1, used in a proposition, isn't the parent of anything. I want it to act on behalf of man, toy, ball, and so on, so that I can say something like "if thing1 is near thing2 then thing2 is near thing1."
 Anyway, here's the complication I ran into.

Consider:

 o height

 / \

 / \

 / \

 tall o o short

If I say "if a man is small then a man is short," then the hash for short will be cast in terms of "if a man is small then a man is height." I need to identify templates within parent, and only promote those.
 Hmmm.... after that bit of grieving over it, it seems quite obvious. I will make templates (e.g. thing1) children of a special parent called x-template. When parent encounters a child of x-template, then it will take the parent's tag for use in constructing the hash.

Otherwise it will take the CC's own tag.

A few bugs:

"if a thing is from an ancient place then a thing is ancient" creates a test that says "^0 is from location"--the "ancient" is missing.
 "the block is from italy" "is the block not from italy?"
August 29, 1998
 I had an idea or two about how to handle transitive deductions. Consider a proposition like:
 "if thing1 is near thing2 and thing3 is near thing2 then thing1 is near thing3"
 Because I (now) know that thing{1,2,3} are instances of x-template, I will be able to recognize them if they survive substitution in deduction tests. From there, I can either perform a poorman's test by running qacands against the parent of (say) thing2, or by creating an internal list of ... hmmm. Nevermind.
August 30, 1998
 I found a vexing problem. This test always failed:
 # Answer should be "yes, mario is in the river" mario is near the princess is the princess near mario mario is in the river is mario in the river
 The answer is a frustrating "maybe." The problem is that mario is near the princess--that's one of his ATTRIBUTEs. Likewise the princes is near mario. When it comes time to add the components of "mario is in the river" to the context buffer, the act of adding "mario is near the princess is near mario" causes mario's rlink chain to get overwritten by the definition from the princess' ATTRIBUTE--"near mario."
 Now I understand the problem. Next, I need to think about how to fix it.
August 31, 1998
 The fix: because addtocontext dives into a CC looking for things to add to the buffer, it can encounter the same concept many times, as is the case with mario in the discussion above. Theoretically, the copy of the concept nearest to the top of the CC is the one we want.

 o Root

 /|\

 ATTRIBUTE / | \ SUBJECT

 / | \

 / | o mario

 / VERB

 / |

 / o tobe

 o Root

 / \

 PREP / \ OBJPREP

 / \

 near o o princess

 |

 | ATTRIBUTE

 |

 o Root

 / \

 PREP / \ OBJPREP

 / \

 with o o mario

Sometimes, however, an older copy can appear in a position where it gets added after the one near the top, depending on the traversal of the CC. I propose that addtocontext build a stack of concept tags... hmmm.
August 31, 1998
 The diagram above helped to illuminate a problem: The uppermost concept might not win because a deeper copy of a concept might appear along another branch. The subject could be mario, for example, and the object may be the princess--who happens to be near mario. If I add mario to the context first, and then the princess, an old copy of mario will get stored away.
 How to solve this problem? One possibility would be to keep a record of the concepts being added to the context, and to make sure that--in cases of multiple copies--that the one with the greatest number of links wins.

This assumes that a concept collects new links--ATTRIBUTEs, CHILDren, etc., over time. It might work. It will be ugly.
September 6, 1998
 (It worked, by the way).
 I am writing tonight to make a record of a problem I have seen before where the first uses of a concept in a compound sentence will create different context-resident versions of the concept, as is the case with:
 "the head is missing because a person stole the head"
 It is (of course) also a problem when pronouns are used to make second references within a sentence:
 "the head is missing because a person stole it"
 The fix for the first case is to use "head" in a sentence by itself, before using it in a sentence where it appears twice. I'll have to fix these problems one day...
September 12, 1998
 Among the up-and-coming efforts are:
· Memory reclamation
· Tense
· Change of tense initiated by orthogonal statements
· Improvements (as described earlier) in propositions
· Speculative proposition execution
· A user's manual
· Directives (e.g. "tell a person x...")
 For memory reclamation, I had an idea that I might replace malloc with my own malloc front-end (actually, this is a two year-old idea). The front end would add pointers for every allocation onto some kinds of fast access data structures. Chooseone would remove everything that is to be saved from the structures.

A follow-on routine would throw the remainder back into the pool of allocated, but unused, structures and strings.
 Since memory allocation is going to be the easiest upcoming project, maybe I'll tackle that--lazy thing that I am. What must I keep track of?

There's:
· concept structures

· conchainnode structures

· intlink structures

· clink structures

· character strings of various lengths

I can start off tackling one, and add the others later.

The question is, how shall I keep track of the allocated structures? Simple linear lists would be possible--one for the spare structures (of a particular type), and one for the allocated nodes.

As long as the number of elements isn't too great, searching through the list of allocated nodes shouldn't be too bad. I have no idea how many nodes actually get processed witin a cycle, so I guess I'll just work with linear list for starters.
 I'll begin with (struct concept)'s.
September 15, 1998
 I am making a new structure--an allocnode--to collect the spares and un-saved concepts, conchainnodes, intlinks, strings, and clinks.
September 17, 1998
 I created allocnodes, and replaced the mechanisms by which concepts get created (and reclaimed).

There are new post routines: keep and reap. keep is basically a rip-off of addtocontext. It traverses the CCs passed in, removing each constituent concept from the allocated nodes list, so that it cannot be reclaimed later by reap.
 Things sort of work. I found one particular problem in titular assignment. An example is the sentence: "the ball is saphire." This creates an asymmetric relationship between the ball and saphire--the ball becomes a child of saphire (actually, saphire-1). This ought to be okay; saphire-1 is part of the basic knowledge pool.

The problem is that the copy of saphire-1 that ball-1-xxx becomes a child of is simply a clone of the real saphire-1. The problem is compounded by the fact that I do not "keep" parents and children of the concepts I process. This is particularly true because the traversal of a CC is recursive; if I traverse all parents (and their parents) or all children (and their children), then the process can blow up on me.
 I thought I might solve the titular assignment problem (and others like it) by having addtocontext actually replace references to "just cloned" clones of members of the basic knowledge pool with their real counterparts. This gets me part way there, and is a good idea in general.
 The next thing would be to "keep" parents and children one level removed from each of the concepts in the CCs I am choosing for commitment to memory.

September 19, 1998

I am in Horsham, PA today.

On of the things I said the day before yesterday was wrong: addtocontext makes sure that no clones are referenced when a CC is committed to the context. Clones are given unique labels and made a part of the permanent collection--a benefit for having been referenced at all.
 The problem w.r.t. titular assignment is that the parent of the assignment isn't necessarily going to be made part of the permanent collection because the parent isn't to be traversed by addtocontext. What I need to do is see that the parent (note: the CHILD link refers to the parent) gets saved off to context if it too is a clone.
September 20, 1998
 It appears that my conservation of concepts is working. Now I have to save conchainnodes, intlinks, etc.
September 23, 1998
 Intlinks and conchainnodes are now being conserved as well.
 I ran into an issue with exchanges like the following:
 the ball is red the ball is round is the ball blue?

 The answer I got was "maybe." The problem is that though orthanswer will make a "no" out of "is the ball blue," selection upstream by chooseone doesn't prefer attribute "red" over attribute "round".

They're both non-matches for "requires blue."

I need to have a post processing routine that causes some preference for the orthogonal pair (by adding, say, a "wants" tag to favor "blue").
September 30, 1998
 I did a fair amount of work on deductions to tests to support a personal shopper scenario. It's coming along painfully. Sooner or later, I need to dump text-based tests in favor of CC-based tests (see earlier moaning to the same effect).
 I noticed a problem today w.r.t. objects with multiple labels.

define
pants-1

label

pants

label

slacks

child

clothes

wants

color-1

number

plural

orthogonal
lowers-1

Above, for instance, the same object is known by several names.

The copies that addtocontext saves can be found in the context symbol table by the *last* label, apparently. If I say "the red pants are good, the blue pants are bad, what color are the bad pants", I get a wrong answer.

Under debug mode, I find just a single instance of "pants"--in the basic pool.

If I look for "slacks", however, I find the context-resident copies of "slacks."
October 1, 1998
 I disabled parentpick. I don't think it was doing anything.
 Here's a brainteaser: I can say "the ball is red. what color is the toy", and get a reasonable answer. A "ball" is a child of "toy" as defined in the basic knowledge pool.
 When I say "the eyes are saphire", I should be establishing a parent/child relationship similar to that of toy/ball. But if I say "the eyes are blue", "what color is saphire", I get a non-answer. But if I say "what color is the material" (material being the parent of saphire), I get an answer like "the eyes are blue." What's this all about?
October 7, 1998
 I solved the above problem by making a change to qacands.
 I have been thinking about formalizing my input patterns a little bit.

They could use a good dose of deliberate thought and order.
At the same time, I am grieving over scoring again.

For a pattern to provide a good yes/no answer, it needs to match a question in tense, number and person, and satisfy the REQUIREs tags. But neither type of match should be sufficient alone. At present, I work pretty hard to make a CC score just right when TNP and REQUIREs match. But its tricky. I have had problems of late with sequences like:
 mario see the red ball
 does mario see the blue ball?
 The answer comes back "yes" because there is agreement in tense, even if not in color. Accordingly, REQUIREs and TNP may need to score separately. And REQUIREs scoring should probably stipulate that all REQUIREs tags match in order to score well.
 I thought I might also investigate supplementing subobj rules with versions that link all of the attributes as REQUIREs. This would allow me to easily recognize requirements in sentences like "does mario see the red ball in the water?"
October 11, 1998
 I am going to make a few changes in accordance with my notes from the other day:

· I will make a set of csubobjs whose attributes carry REQUIRES tags.

· These will be for formulating questions--particularly questions with very specific attributes (e.g. "does the red ball see the blue ball in the water?").
· Satisfying a REQUIRES-based in a yes/no sense will mean that all REQUIRES will be satisfied.

I can gauge this by counting the embedded REQUIRES, collecting a score and diving the score by the number of

REQUIRES found.
· The value of matching a REQUIRES tag will go backup to some high figure.

· A "yes" value will be at least that of a REQUIRES tag.
· A subroutine of yesno will look at all of the top-level WANTS tags, determine which are children of tense, number or person, and verify that all are satisfied.

If any are not, then yesno will return a "maybe" or a "no", depending on the concept's vertical score otherwise.

October 16, 1998

I also think I need to merge the questions (with their attendant REQUIRES tags) into the candidates matched by attrques and declques.
October 17, 1998
 Tidying up according to the plans mentioned the other day. I'm going to go through each question type, one at a time, and verify that it does what I need it to do.
October 20, 1998
 I have been cleaning up. One problem: orthanswer tries to put a REQUIRES not up in the root to match a EMPHASIS not, and thereby score well.

I was stripping the REQUIRESs tags in accordance with my plans above.

And nobody scores well if all of the REQUIRES aren't satisfied. Sooooo.... I need another way to make an orthogonal result score well. How about a "just gimme 500 points" tag?
 Also, look at utter_tobe to see if it requires a REQUIRES not to say "not."
October 22, 1998
 Look into orthfavr. It grabs REQUIRES tags from the root and dives down looking for

ATTRIBIUTEs that are orthogonal to the REQUIRES.
 I need something more flexible than orthfavr to compliment my new handling of ATTRIBUTEs in questions, cast as REQUIREs--not in the root, but along with the OBJECTs and SUBJECTs.

orthfavr might be best reworked to not depend on the root.

October 24, 1998

I rewrote orthfavr to do what I want.

It occured to me that in vertical scoring, I could give orthogonal comparisons a little boost, and not even need a separate orthfavr routine. For now, however, it remains.
 A note on declques: I need it to preserve the WANTS tags in the root.
 A broader observation: I have unwittingly partioned CC post processing into two sets of operations--those that modify and pass a CC through (most of the postp routines) and those that replace the contents of a passed-in conchainnode with something else.

Examples of the latter class are declques and attrques.
October 31, 1998
 I have been grieving over the following sequence:
 the ball is red the ball was blue is the ball blue?

 The answer is "the ball has been blue, maybe."
 The fix may be to make pullattrs2, pullattrs and pull2attrs work exclusively with ATTRIBUTE tags that agree with the tense of the VERB ("to-be"). If you think about it, this would match the way a person considers an attribute when asked a question. If I say "what color was the sky," you will first project yourself into the past, dismissing all current features of the scene, before picking through the features that were.
 Anyway, I am going to change the routines to do the above.
 Note to self: finish pushtense revisions.
Later: whoo-hooo! The change above worked.

Later-later: look into the statue scenario to see why I have a problem with "is the statue blue?" And why, when I say "the statue was blue." the program comes back with "the statue is blue.
November 4, 1998
 The first problem above simply was a matter of adjusting the award for satisfying WANTS flags.

Every time vscore encounters a CC from the context, a point is awarded.

On more complicated CCs, the contribution from the context-resident CCs was greater than that of the WANTS flags.
 Last month, I went through an exercise of further differentiating between REQUIRES and WANTS algorthmically such that no REQUIRES flags counted unless all were satisfied. Furthermore, WANTS of TNP had to be satisfied too, or no other amount of good scoring would make the CC a win. Anyway, the net result is that I no longer have to balance REQUIRES and WANTS so that particular combinations result in a "yes" from yesno, whereas others simply score a "maybe"; I can choose values for WANTS and REQUIRES independently.
 The second problem cited above has to do with pulling orthogonal ATTRIBUTEs into declarations. I might have a copy of blue in the context with a TENSE of present, for instance. Used in conjunction with red with a TENSE present, this would be oorthogonal--it shouldn't happen. The trouble starts when I say "the ball was blue." blue from the context gets selected, now with both past and present TENSEs.

November 5, 1998

Here's the troublesome sequence:

the eyes are blue

the statue is red

the statue was blue

November 23, 1998

The little snippet above is fixed.

The problem persists for the statue scenario that first exposed it. It looks as if the problem is within orthelm, but I have been having some trouble finding it.
 Someone contacted me about a week ago to ask about a commercial use of Brainhat.

As part of the deal I agreed to document the way ideas are represented in the basic knowledge pool. I wrote that piece in HTML for the web site. In fact, I have decided to keep all user docs in HTML (ugh).
 Soon, I will start writing replacement processing for propositions. I plan a baroque inference engine, like the thing I specfied some months back, except that it will be even greedier for knowledge. Plane... time to go.
November 26, 1998
 Yesterday, I received an RFP from another company doing medical chart recording, and interested in incorporating Brainhat. With respect to the "troublesome sequence" described on November 5, I have a little bit of a decision to make.

I'm not absolutely certain the issue that I am describing today is the cause of the trouble with the statue scenario.

However, the changes I am contemplating would make the problem go away.

Here's a simple sequence to illustrate the problem:

the statue is red

the statue was blue

the eyes are blue

the eyes was red

By the time Brainhat reaches the fourth line, the context-resident version of attribute blue-1 has past and present tenses associated with it.

Likewise, blue-1 is associated with the context-resident copy of eyes-1. When I say that the eyes were (was) red, I create an orthogonality for the context-resident copy of eyes-1 because blue already has TENSE tag that says past; the eyes can't have been blue and red at the same time. The result is that the context-resident copy of eyes loses an orthogonality race with one pulled from the basic knowledge pool, and a new set of eyes are created--eyes that were red, but otherwise have no relation to the blue eyes.

Getting back to the statue scenario, I think that the same issues are biting me. But I'm not really sure how. It really looks like orthelim is missing a step, however it is possible that having multiple tenses ganged onto an attribute is complicating things.
 Anyway, the fix is probably to prohibit multiple tense on attributes. There is something to lose: if I apply emphasis to a color, say "sparkly", it will be associated with the attribute in the current tense, but won't follow along to other tenses.

Instead, something that was or will be blue will not be "sparkly blue," but simply blue. I guess this is okay... maybe preferable.
November 29, 1998
Above: done.

No ill effects.

I am about ready to turn my attention to the replacement code for doing propositions.

I sketched out some possibilities a number of months ago.

All of those still seem reasonable, if not a little bit limited. Here's some basic thoughts:
· The hashing mechanism I use with propositions now needs expansion. Particularly, I want to hash into the context; I want to speculatively execute propositions, etc. This means that the hash needs to be more universal. In fact, hash and retrieval should be black-box functions to the rest of brainhat.
· The replacement for the deduction engine needs to dynamically perform argument substition.

· My deduction engine should be extensible.

· More complicated thought processes, such as recognizing a thread and creating a story, and simply drawn out deductions. Furthermore, they can be represented by patterns. So, in the end the deduction engine should be something that looks for patterns of CCs.
· other thoughts...
November 30, 1998
 A company called WorldTalk sent an email note today. They are interested in having Brainhat read email messages for content security. Atlantic is a reseller of the WorldTalk products already.
 On another note: I need to make Brainhat be able to read arbitrary text--at least to be able to scan it for words it knows.

This way, I can handle long sentences with commas, or any kind of mindless rambling.

How would I do it?

I guess I would need to first recognize sentences that fit my basic structures as I have them now, and then begin to search yearningly for verbs, nouns, etc. in those that I don't immediately recognize.

Moby Dick:
"Call me Ishmael.

Some years ago---never mind how log precisely--having little or no money in my purse, and nothing particular to interest me on shore, I thought I would sail about a little and see the watery part of the world. It is a way of driving off the spleen, and regulating the circulation. Whenever I find myself growing grim about the mouth; whenever it is a damp and drizzly November in my soul; whenever I find myself pausing involuntarily before coffin warehouses and bringing up the rear of every funeral I meet; and especially whenever my hypos get such an upper hand of me, that it requires a strong moral principle to prevent me from deliberately stepping into the street, and methodically knocking people's hats off--then I account it is time to get to the sea as soon as I can."
Turtle Book
 "With all but a few exceptions, turtles have excellent eyesight; some species, at least, recognize color. All turtles have well-developed sense of hearing, although they do not have external ears. They reproduce by laying eggs dug in sand by the female. Incubated by the solar heat, the eggs hatch in five to ten weeks, the youngsters digging out the nest and entering the water Immediately. There is no parental care. Some northern species hatch in the fall but remain in the nest until Spring, surviving on the remains of the egg yolk. Baby turtles break their way out of the egg shell with an egg tooth, a small structure located on the snout. Most other reptiles, as well as birds, share this structure and use it to break out of their shells."

Becomes...

turtles have excellent eyesight

some species recognize color

all turtles have hearing

they do not have external ears

they reproduce by laying eggs

the eggs hatch in ten weeks

there is no parental care

some northern species hatch in the fall

baby turtles break out of the egg shell

most reptiles share this structure

December 6, 1998

More thoughts about greedy mode:

Maybe there shouldn't be a greedy mode at all.

Rather, perhaps I should create a new input pattern handling method that will defer the match of some required component through up to N copies of something that doesn't match.

Or perhaps the patterns should specifically attempt to reach further into an utterance and understand it in whatever order gives the best meaning.
I guess I would need to first recognize sentences that fit my basic structures as I have them now, and then begin to search yearningly for verbs, nouns, etc. in those that I don't immediately recognize.

I recognize sentences and then search for verbs in sentences that I do not recognize.

I am going to have to chew up some code written about 9 years ago. Unfortunately, I don't remember exactly how it works.

The other possibility is that I leave the existing code for representing and traversing input/cc patterns alone, and make a special, non-sequential form for greedy input.

December 10, 1998

Yet more thoughts.

First off, I might be better to call it sloppy mode, or casting mode. And rather than concoct a brand new set of pattern match routines, I thought I might make an ugly extension to compare, and work it that way. Imagine a pattern like this: Y4c`attribute-1`0. This might mean that find should try the next token, and then the next... looking for the attribute... up to four dead tokens away from the cuurrent buffer position. Within select in find.c, a small iterative loop of recursive calls would take place.

Can I get something like Y4c into a rule?

We'll see...

December 19, 1998

The $Y stuff works great.

Here's an example take fromt the input patterns:

rule

$Y4r`subobj`0! $Y2c`tobe`1! $Y3r`ccattr`2

This says that up to four things can be skipped as brainhat looks for a subobj, followed by up to two things en route to a verb, ans so on. A sentence like:
 That hep dude mario xxx was slap happy.
 will translate intl "mario was happy." I also created a $W template that matches anything between whitespace. I can use it to skip the first N tokens on a line.
 Tonight, I am looking into txtwhy. Its a lame routine that grabs the first thing off the context buffer and passes it along to why and why2 for a match. The first problem is that it causes the program to dump core when used in combination with why. I think the reason is that why doesn't correctly discern the difference between a statement about attributes and a declaration.
 The second problem is that the thing I want to address a "why" question to isn't always on the head of the context buffer. More often, the "why" follows another question. Accordingly, the why should address the last answer, not the last thing stuffed into the context.

To solve the problem, I am going to create an ugly global that keeps track of the last thing brainhat said, plus a post routine to stuff the global. txtwhy will get smarter in the bargain.
January 1, 1998
 I extended $W so that it creates a randomized label and text for the thing it matches.

This way, I can use it to create concepts for previously unknown words.

A good use would be in learning someone's name:

"I am fizgibbet" could be matched by

$r`subobj`0! $c`tobe`1! $W2
I also need to dress up pronoun processing.

Particularly, I need to be able to handle pronouns at one end of an utterance that refer back to something at the other end as in "mary was happy because she was home." Furthermore, I have to write code to handle possessive pronouns such as "my", "his", and such.

The best starting point would be a set of exemplar cases from which I can extract some general rules.

If I say "mary was happy because he was home," for instance, it is clear that "he" is a character encounter previously.

When the sentence becomes "mary was happy because she was home," the rules change: is the "she" in this statement "mary" or a previous actor? I had created a notion of low pronouns and high pronouns. The reasons still seem intact: in some cases, Brainhat can find a pronoun match right nearby. In others, Brainhat will have to survey the landscape for an appropriate match.
 On a more immediate note, I am modifying PULLATTRS2 and the other pullattrses so that attributes that match REQUIRES tags get automatically added to the result.

Currently, PULLATTRS2 makes N copies of the concept in question, each with one of N attributes appended.

The problem is that the statement to be evaluated (e.g. is the red ball round?) will bear multiple REQUIREs tags (red, round). If all matching attributes are not present, the best I can answer is "maybe."
 By the way, I can answer questions of this sort now, but it is by a complicated method: I independently add the first attribute (red) with a REQUIRES tag as I assemble the question.

I recently changed the way questions are composed so that all attributes that appear in the question become REQUIRES tags. Fixing the pullattrses so that any attributes that match REQUIRES tags is going to get me there more efficiently.
(later)

I eliminated pull2attrs altogether.

Most of the changes went into pullattrs.

All is well.

January 3, 1998

Somewhere along the way, I broke something fundamental.

If I say:

The red block is happy.

The blue block is square."

Brainhat should generate two candidates when it sees the second statement.

One should be orthogonal to the other, and thus two blocks should come to be. Now, however, I am seeing four blocks being created.

Two of which appear to be identical, and do not bear the blue attribute.

The problem crept in over the last two months some time.

January 5, 1998

The problem was qacands.

I had made a change to make it more liberal.

Before the change, it only looked into the context buffer if lookfor found no context-resident matches. Afterwards, it trolled the context regardless.
 It got complicated because the stuff that qacands gathered didn't have the ATTRIBUTES or REQUIRES affixed to it that csubobj glued to the bonafide matches taken from the symbol tables.

The fix, assuming qacands locates a potential match in the context--one that isn't already in the list:

1) Have qacands locate a "just-cloned" (from the basic knowledge pool) copy of the "thing" in question from the passed-in conchain.

There has to be a just-cloned copy present.

2) Gather all the ATTRIBUTES and REQUIRES tags from the "just-cloned" thing and glue them to a copy of the candidate.
 Will that do it?

I hope so.

Any orthogonality problems should be eliminated upstream. Should I be using a successful qacands match to patch up the context? Hmmmm...
January 9, 1999
 (In Florida w/ Popes)
 Yesterday we went to Kennedy Space Center. Today we spent time at the Canaveral National Seashore and visted the raceway in Daytona.
 I'm getting to the point where its time to implement the long-coming infrastructure changes I've planned. Here's another for the pile: I need to distinguish between references to classes of objects

(of signified by plural, or by reference to a material) particular objects (definite article), or single members of a class (indefinite object).
 The need is really apparent when I look at the following sequence:
the eyes are saphire saphire is blue (or saphires are blue) are the eyes blue? (yes) is saphire blue (maybe) .nf The answer is "maybe" because qacands trolls the context buffer for things that might be "the saphire."

In this case its the eyes.

Accordingly the eyes get "blue" and saphire remains unchanged. If I had said "the saphire is blue," that would be okay. Otherwise....
January 11, 1999
 My short list of things to do:
· Fix pants/slacks symbol problem. If a copy of slacks gets added to the context, it should do so under all of its labels.
· Make pullattrs grab from parents(?). Maybe make a second post routine that checks to see whether pullattrs satisifed all of the REQUIRES tags. If not, pull from the parents.
· Add another csubobj group that adds both a WANTS tag and a REQUIRES tag to combat the problem where a question can be answered symmetrically. e.g. "the red ball is happy. the blue ball is sad. is the blue ball happy?"
· Change utter_apost to take a vector of attributes as an argument, utter the apostrification, and then remove the apostrification from the vector.
· Make articles be their own kind of link.
· Refine the changes to qacands that make it behave differently in the presence of an indefinite article.
January 14, 1999
 Lowpronouns is kind of broken, and its kind of crappy code. Its worth thinking about how low pronouns might work, by example.
She sees the ball.
 Refers to the latest CC in the context that mentions a female. She could be the subject or the object; competition between CCs will choose which.

Examples: "the princess sees lucy. she is happy." or

"the princess heard a sound. she was afraid" or

"mario saw the princess. mario looked at the floor. she was naked."
 Luigi sees her.
Same rules as above.
Luigi sees her too.
Refers to latest CC that mentions a female object (not subject, preferably). "Lucy sees the princess. Luigi sees her too."
 Mario was happy because he was home.
 This one is tricky.

Consider that it could say "mario travelled all day. mario was happy because he was home." Or it could be "Luigi knocked on the door. Mario was happy because he was home." Or "luigi went on a trip. mario was happy because he was home. Substitution will require some knowledge of the conversation. If I ask (in order of the statements above) "is mario home?", "is luigi home?", "is luigi home?", the answer should be "maybe" (or yes), "maybe" (or yes) and "no."

That should result in "mario", "luigi" and "mario."

So: to approach cause-and-effect uses of pronouns, I should search back a little way into the context, and look for another subject or object matching the gender of the pronoun, and have brainhat ask the question: "is the effect true?" for each of the potential actors.

Everyone that comes up with a "maybe" or a "yes" gets included as a possible resolution of the pronoun, to be sorted out later when chooseone executes.
 This adds pronoun processing at another level. For statements that can be the effect portion of a cause-and-effect, I cannot resolve the pronoun until Brainhat has asked the question: "is the effect true (for pronoun candidate X)?" This gives me more variations of csubobj to deal with (unfortunately). It also means that I have a new set of pronoun processing routines-- midpronouns.
 I'm going to put midpronouns off for now.

The idea of making a whole new subtree of patterns that don’t call lowpronouns is too unattractive.

Instead, I need a new pattern matching extension (called OPTIONS?) that allows me to set flags that tell post routines invoked along the way to give a conchain special processing. The simplest example would be a flag that tells lowpronouns to return a chain unmodified. I need the same kind of option flagging capability for qacands too.
 One other note on pronouns: I need to keep questions around, and interleaved in order with statements found in the context.

This way, pronoun processing can correctly refer to subjects and objects that may be referred to as part of a question and answer session. Perhaps, in addition to a conchain "context," I need one called "discourse" to include everything: statements, questions and answers. That could replace the "savestmt" kludge I added recently.
 While I'm on the subject of pronouns, I need to resolve possesive pronouns too.

And another project: I need to be able to match whole portions of utterances, and reuse the results over a number of larger patterns. For instance, the effect part of a cause-and-effect is just a simple statement.

Why not match the effect part once and re-use the matched pattern for any number of patterns that start with a simple statement?
Today: I rework lowpronouns and add the discourse buffer.
January 23, 1999
 I'm trying to clean up the verb tense, number and person some more, particularly with uses of "tobe."

Here's what i think should be happening:

· Verb tense should be getting pushed onto attributes. (but not number or person, as is happening now. Number and person come from the subject). Sometimes tense is pushed onto subjects too. This is a kludge that allows brainhat to perform titular assignment in different tenses, ala "mario was the king."

· Verb tense should be pulled from the attributes or children. Number and person should be pulled from the subject.
 I will be making a few changes in the pull and push routines, plus the use of get best tense be routines that voice forms of "tobe."

January 30, 1999

lowpronouns is still broken.

I am going to be more deliberate about finding matches for low pronouns:

step backward in time through the discourse buffer looking for subjects first and objects second.

That is, the order of the search for a pronoun candidate will be:

last utterance subject, last utterance object, penultimate utterance subject, penultimate utterance object, and so forth.
February 5, 1999
 I fixed lowpronouns some other way. Anyway, it works pretty well.
 I have been thinking about how to give names to things, which has opened a snake can of questions about definite versus indefinite articles, titular assignment, and storage of a single concept under multiple labels.

These are all problems that I have identified in the past.

If I say 'the ball's name is huey,' I believe I am saying 'the ball is still the ball, but it is also huey.'

In the same vein, all the qualities of the name 'huey' (if there are any) become qualities of the ball.

This assignment of names, then, is a special case of titular assignment, such as when I say 'mario is the king.' And consider that the assignment can have tense too, such as in 'mario was the king.'

Titular assignment can be different, depending on the presence of a definite article;

"Mario is the king" is different than "mario is a king."

In practical terms, the first case represents a merging of concepts within the TENSE associated with the assignment. The second describes a parent/child relationship where mario is the child of king, with TENSE carried by the child.

I grieved over all of the same questions about a year and a half ago. I punted, and chose to implement all titular assignment as parent/child relationships.

I'm ready to think about it again.

Once the definite/indefinite article stuff is cleaned up (I am going to make articles and numerations have their own tag separate from ATTRIBUTE), I will be in good shape to differentiate in titular assignments. Assignments that follow indefinite articles will continue to be parent/child relationships. Others will be a merge to create a super-concept which carries its own TENSE (subject to restrictions that I avoid cycles in lineage). The super-concept will be known by all the labels of both participants.
 Which brings up the next topic: there has been a problem outstanding wherein addtocontext updates the context with a modified concept only under its primary label and first text entry. The reason is that there is no way to start with a concept and uncover all of the labels the concept may be known by.

That is, there is no way to ask for all of the symbol table entries that refer to the concept residing in the basic knowledge pool, and them use them within the context. To fix the problem, I need to make the text member of a struct *concept be a list, rather than a simple char *.
February 6, 1999
 I created an ARTICLE tag and reworked everything that referred to articles as attributes. I also modified qacands to recognize the difference between definite and indefinite articles. In conjunction, I need another twist: if I say "people are stupid," I need this to be applied (by virtue of its indefiniteness) to all people concepts, whether in the context or basic knowledge pool.
(later)

How to do it?

Hmmmm....

Two possibilities:

First, qacands could pass along only candidates from the basic knowledge pool--none from the context--in the presence of an indefinite article. These could be recognized by addtocontext as modifications to the basic knowledge pool.

Note: there have been no modifications to the pool to date; all changes have been made into the context.

The second possibility is a routine just after qacands that scans the candidates to see if they have parents in the basic knowledge pool that might better be substituted from the context. This is the way to go.
 Historical note: there is a (pretty well retired) routine

(called parentpick) that makes similar replacements within the context buffer.

Anyway, I'll try implementing this and see if I get away with it.

February 7, 1999

Grieving about it some more, it seems to me that the second option above is still going to be incomplete because there will be past and future children of the parent that is being modified by virtue of the indefinite article that won't benefit from the change; if I change the parent in the context, I miss it in the basic knowledge pool, and vice versa.
 Here's (perhaps) what I need to do: just before chooseone, I could have a routine that looks for attribute assignments that have indefinite (or absent) articles on the basic knowledge pool-derived candidates. This could be a signal that the assignment is a generalization applying to all <whatevers>.

"People are stupid" would be an example of a blanket generalization. In the CC, the subject would lack a definite article.
 Finding the pattern, I could toss all context-resident candidates from the chain, leaving just the virgins. Then, I could run chooseone (from within the routine) to pick the best horizontal candidate. That would leave me with a list of just one element.
 Next, I would do a context symbol table search for all concepts bearing the text label of the concept I have in my hand. Stepping through them, I could check to see whether each has the same tag as the thing in my hand.

If so, I could assign the attribute I have in my other hand to the concept.

This way I could simultaneously update all copies of <whatever>.
February 12, 1999
 I ended up pulling parentpick out of the junk pile, shining it up, and puting it back into play. It handles the problem of recognizing when a concept's basic knowledge pool parent should be replaced with one from the context buffer. Because of the way it is written, the replacement only applies over recent entries into the context. So, if I say "people are stupid," only recently mentioned people get a black eye.

This is probably a good thing.

Next, I address the challenge of merging concepts, as discussed a few weeks ago.

February 20, 1999

Nope, not that.

I am going to do battle with test-based propositions.

First, some recent news developments.

Scott Werndorfer work on imperative statements last week, and extended brainhat a little to make it actually execute commands. We made it send email, for example, in response to an imperative "mail so-and-so." We also made use of the $W directive that creates a new context entry on the fly. It works pretty well.
 Now to propositions:
 "if A action B and C action D then B is E"
 Here's a simple proposition without any unconstrained members. evaluation will follow some simple to describe) steps.
1) make appropriate replacements at evaluation time.

2) If there are any unconstrained substitutions (appear more than once, and are children of x-template), then do processing described below.

3) Promote any remaining x-templates end evaluate.

I have been considering whether I need all of the complicated mapping I use now with test-based tests (ala "^1").

I don't think so.

When it comes time to make substitutions into the CC, I will have in hand the tags that caused the succesful hash that brought me the CC, I will have the concepts associated with each tag. If I simply pick through the proposition and substitute whenever I find the tag, that sould do it.
 As for unconstrained cases: I need to think this through in more detail.

However, a linear approach seems like a good one.

Say I have the proposition:

"if X is near Y and Y sees Z then X sees Z",

or perhaps

"if Y sees Z and X is near Y then Z sees X"

I make a pass through, substituting each of the x-templates as appropriate. Next, I take stock of the unconstrained leftovers--assume in these cases, the x-templates "Y".
1) (Is there a vector already? If so, skip to step 2.) Encountering "Y sees x", I can ask Brainhat "what sees x?" This will give me a vector.
2) Start a new vector.

Encountering "Y sees z", evaluate for each element of the vector "{y} sees z". For each "yes", add the element {y} to the new vector.

Repeat for each unconstrained variable and each CONDITION. In the end, check to see if all the vectors {y} (and whatever) are not empty, if any are, then the proposition test fails (ends in a "maybe"...). Otherwise, substitute the first element from each vector and re-evaluate the proposition from the start.
 Game plan:
· Create g.p. clone to n-levels cloning routine.
· Make the hash more g.p.
· Replace qcomp
· Look at attrques, declques to figure out what comes next.
February 24, 1999
 I am implementing it.
March 3, 1999
 So far, so good. I have one or two problems to think about. One in particular is how to give a gold star or a seal of approval to a concept that has been proven in a proposition test. Going into \fattrques\fB(2)\fR, a statement (actually, a question) has a bunch of REQUIRES tags glued onto it. These help the CC get a "yes" or "no" when it reaches yesno. The trouble is that the statement proposition tests are hashed using a small handful of tags--not enough to cover all of the possible permutations. The proposition might succeed, but the outcome might not be what I expected going in.
 For instance, a hash that simply looks for SUBJECT (say "toy") and ATTRIBUTE (say "color") might match and summons propositions that report either of "the ball is red" or "the ball is not blue."

And there could be variations in TENSE as well.

By the old method, attrques simply dressed up the question when the proposition matched. If I said "is the ball blue?", a successful outcome would assure that the question passed the yes/no test. However, using a more flexible form for propositions, the answer might actually turn out to be "no."

So here is the problem statement:

I need to tighten up the interpretations of propositions.

I could either add more hash tags to the proposition storage, or I could attempt to substitute the proposition's positive outcome in lieu of the question asked. Method one means that I would answer questions very narrowly. Method two means that I would (perhaps) return a more general, conflicting, or variety of answers. I like method two.
 The issue that remains, then, is how to dress up the substituted proposition result(s) so that they reach yesno and score appropriately.

I could add a bogus 'seal of approval' tag to the root, I suppose. Or I could attempt to add REQUIRES and WANTS tags in the appropriate spots. Hmmmm...
March 5, 1999
 Still saying "hmmm...." I keep imagining ways to re-ask the question posed to attrques2 after the fact.

But all of them are too forced.

They involve gluing pieces onto the original question. But the answer may not exactly match the question...
 Here's an approach: I know that attrques(2) will always follow tobecomp2 or equivalent. Perhaps I can restart the question partway through--from within attrques. I am going to try that.
(later)

That's what I am going to do: restart the question following a succesful proposition test. The original query will recursively self-talk back to brainhat. Then, to make sure that I don't answer a question within a question within a question, the first copy of attrques will return a NULL conchain, or the value empty.

One thing to make sure of: I have to add a cycle tag to something within the portion of attrques(2) that conducts the proposition test. Otherwise, I might ask the same question repeatedly, in a circle.
 I made another change that I need to record here: the proposition tests actually generate self talk for the EFFECTs. This way, if an effect is a directive, or should have some other side-effect, it will happen; the mainline input processing will encounter the effect portion of the cause-and-effect, and do the right thing....

March 10, 1999

It works!

There are a few leftover items though.

Particularly, I need to think about preserving the emphases on

attributes and the attributes on things.

Consider this example:

"if the toy is red then the toy is not round."

Then, at evaluation time:

"the ball is red."

And "is the ball round?"

The difficulty is that "toy" gets replaced with

"ball" and "not round" gets replaced with "round."

This is because "not" in the proposition is connected by an EMPHASIS tag to the word "round."

At evaluation time, "round" in the proposition gets replaced by "round" in the question.

The "not" tag gets lost.

The question here is: what steps should I be taking to preserve the tags connected to the concepts that fill in the proposition.

Say that I copy the EMPHASIS tags or ATTRIBUTE tags at substitution time. What might happen? Consider "the ball is not red." "is the ball round?" The substituted test becomes "is the ball not red?" And the answer is "yes, the ball is round." Wrong.
March 11, 1999
 I think I need to ask, before substitution, whether the thing I am substituting might be orthogonal to the template. I'll look into that...

I have to be sure that the template is rich enough to fail an orthogonality test under the right circumstances.
March 14, 1999
 I'm so sleepy. The new cc-based propositions are working terrificly for 'tobe' results. I now have to extend the tests to declarations using other verbs.
 Before I proceed, there is one fine point to investigate: a proposition that contains a negative condition could be satisfied by an attribute that has nothing to do with the hash used to locate the test. Here's an example: "if the ball is not red then the ball is round." "the ball is blue."
 At present, I don't key on the conditions--just on the consequences. In the future, I may key on the consequences.

The fix might be to make the hash reference that parents of the thing that is "not."

In this case, that would be "color," the parent of red. Something to do one day...
(later)

I have been compiling the code for a Win32 system.

I have found a number of bugs in the code, illuminated by springs shooting out of the microsoft runtime. Fixing...
March 19, 1999
 I have been working on the new CC-based proposition tests. They work well for a while, and then something morphs. Here's an example:
>> xif the ball is red then the ball is round.

 if the ball is red then the ball is round.

>> the ball is red.

 the ball is red.

>> xis the ball round?

 yes. the red ball is round.

>> xis the ball round.

 yes. the red ball is round.

>> xis the ball round.

maybe. the red ball is round.

(later)

The problem turned out to be that I forgot a line in match_first to forstall calling reap until recursive calls to match_first returned to the top level.

Okay now.

March 21, 1999

Declaration propositions work now too.

However, there's a difference between the test-based and CC-based propositions that I overlooked.

It has to do with x-template style tests, ala "if thing1 is near thing2 then thing2 is near thing1."
 During the proposition compilation process (comp), the children of x-template (which should be concepts that have no children, and just one parent... for propositions) get their tags promoted to their parent, so they can be found in the hash. In the "if thing1 is near..." example, thing1 gets found in the hash by having its tag reference promoted to it parent's, things. I have to do this because proposition tests apply to the concepts in the template and all of their children--lineage matters. If I didn't index thing1 using its parents tag, then proposition tests would never find it.
 Consider "Is the ball near the block?" In this case, thing1 is the ball. However, ball is not a child of thing1; I would never test the proposition if I didn't hash on the parent's tag.
 o things

 / \

 / \

 / o toy

 thing1 o \

 \

 o ball

Anyway, with the CC-based propositions, the whole proposition gets cloned, and then substitutions take place.

The substitutions are keyed on tags.

So, if... nevermind: the answer came to me.

I'll keep two sets of tags per proposition: the ones that the program hashes on, and the ones it uses for substitution.
March 28, 1999
 mario is happy.

 is a man happy? This doesn't work the way I think it should. I believe that it has to do with my changes to qacands to accommodate definite versus indefinite articles. That, and some differences in the nature of definite and indefinite articles in questions as opposed to statements. Particularly, it is apparent that the indefiniteness of articles is less important, or perhaps not important at all, in questions.
(later)

I created a different version of qacands, called

qacandsall.

Input rules for questions invoke qacandsall.

It works!

I am at the point where I should be able to delete

attrques, qcomp and declques, plus all routines in tests.c that refer to text-based propositions.
 Now, to make a ponder routine that speculatively executes propositions!
April 7, 1999
 I am getting some looping in expression evaluation. Particularly, I am seeing the following sequence cause a loop:

if thing1 is with thing2 then thing2 is with thing1.

if a man is with the princess then a man is happy.

the princess is with luigi.

is luigi happy?

The problem may be that when evalprop stores away the result of a speculative proposition, it spawns more speculative propositions--just like the one being stored. Normally, recursive speculation will be a good thing.

Here, however, it runs away.

The fix is probably cycle tags.

April 11, 1999

I fixed the problem above.

I'm not sure what was broken.

Given a statement--a CAUSE--I was crawling up the parents' chain of the important components of the cause, looking for matches in the hash table. I was willing to allow multiple matches beyond the first one--matches that had to do with the parents of the first successful match. My sense was (is) that there may be multiple propositions to exercise, each with the same parent lineage.

Anyway, I limited speculation to the first proposition that matched, and the problem went away.
 Now I have a more tenacious problem: when I turn on speculation + memory management, CCs get corrupted. When I shut memory management off, things are okay. I've been searching everywhere, but I can't find a spot where I forgot to keep a data structure.
April 16, 1999
 There is something is wrong with memory conservation of clinks that was exposed by a call to striplinks within evalprop.

I must have spent 1.5 weeks trying to identify the problem.

Now, I am going around it.

Within evalprop, I am simply changing REQUIRES tags into IGNORE tags.
 Some things to think about: lucy does not like spiders does lucy like a spider? The answer is "maybe." The problem is that "spider" is a child of "spiders." Maybe spiders should be a child of spider. Will try that...
April 17, 1999
 Need to fix: mario has shoes. does mario not have shoes? yes. mario does not have shoes.
April 20, 1999
 Fixed.

I needed a simple change in cc-patterns.

I am going to go back into the notes and look for some outstanding projects to tackle. Here's the list of un-done things I found:
· Add titular assignment to the repertoir of propositions.
· Fix apostrification. Something broke.
· Motivate passage of time by orthogonality.
· Fix pants/slacks symbol problem. If a copy of slacks gets added to the context, it should do so under all of its labels.
· Add another csubobj group that adds both a WANTS tag and a REQUIRES tag to combat the problem where a question can be answered symmetrically. e.g. "the red ball is happy. the blue ball is sad. is the blue ball happy?"
· Add 'ask' as an imperative type. Create an ask buffer.
· Create interim matches in input-data/match_first
· Work on concept merging to augment titular assignment. Add tense to 'things.'
· Work on pulling labels onto 'things.'

· Make it possible for brainhat to ask itself whether it knows the answer to a question.

May 4, 1999

Tired.... this firewall business is detracting from my brainhat work. I added an imperative, "ask", to the repertoir. I need to have "ask" only take effect if brainhat really needs to ask--if brainhat doesn't already know the answer to a question. I also need to tuck away the question in case the answer is "yes."
May 8, 1999
 I did some more work on an ask imperative.

It sort of works.

However, there are some ugly elements to the way brainhat says things out loud, and to the way that it takes input.

And I'm not sure whether I should be waiting for input immediately after asking a question, outside the normal cycle of input, like I do now. Brainhat asks "is the ball round?," and then waits for a response. The user can say anything.

If he/she says "yes," then brainhat will commit "the ball is round" to the context by self-talking.

The plus side of this method is that I don't have to squirrel away the answer to the question, and then self-talk it later.

That, in turn, makes the program more parallel.

The downside is that I have I/O being initiated from within a post routine--checkcommand in this case.

Very Ugly.

I am going to retrace my steps, and squirrel away the answer. I'll add a new post routine to self-talk the squirreled-away answer in response to a subsequent "yes" or "no."

Then I'll extend this kind of processing to cover exchanges such as "what color is your hair?"
 One other thing to revisit in the short term: multiple deductions in response to one input. I'd like to be able to say:
 If the ball is red then the block is round.

 If the ball is red then the block is blue.

 Likewise, I might want several questions to be asked:
 If the ball is red then ask if the ball is round.

 If the ball is red then ask if the block is blue.

 If the ball is round and the block is blue then tell speaker that mario is ugly.

May 10, 1999
 I have removed I/O from checkcommand, and am satisfied with the results. There is another stickler though, as illustrated by the following test:

if mario sees the ball then ask if mario wants the ball.

mario sees the ball.

The first statement above gets stored as a cause and effect. When we get to "mario sees the ball," the test is invoked by evalprop, succeeds and addtocontext stores the components--including "mario wants the ball." I need to keep imperatives (as identified by the imperative tag) from getting stored as context until they are exercised.
 There's a bunch of possible solutions.

I could give imperatives a tag different than "condition" or "consequence." This, however, would complicate the input patterns; I would have to treat imperatives differently.

But I have another idea...

In evalprop, the components of a successful evaluation get mapped CONDITION --> CAUSE and CONSEQUENCE --> EFFECT.

There is no good reason for this; I have been simply carrying two sets of tags with the same purpose. Within evalprop I map one set to the other. But it might work out if I only mapped CONSEQUENCE --> EFFECT when the effect was not an imperative. Then, I could tell addtocontext to ignore CONSEQUENCE tags. This would keep the imperative from being stored away. I'll try it.
(later)

OOooooo. That worked well.

Now, I need a routine that can turn a "yes" statement into a

"no" statement.

After that, I need a mechanism to understand grunted input in terms of a previous question.

So, for instance, if the brainhat says "what color do you like," brainhat can take an answer like "blue."
May 11, 1999
 I am in the airport at Philadelphia. I had some time in the car on the way to GMAC today to think. The next two projects I am going to tackle (in the two hours until my flight) are a temporary place to stuff intermediate results. This would be a new tag type for find. If $T is available, I'll steal that for the assignment. I would use it to store the result of an evaluation of csent patterns.

That way, I can have an intermediate result available before looking for csent's to substitute into more complex forms such as "csent because csent."

As it is, the whole collection of csent can be evaluated multiple times--very wasteful. I also need a post routine to tuck the temporary away.
 If I get past that, I am going to work on a routine to negate sentences that express tobe. I need this correctly commit a "no" answer to a question posed to the speaker.

But first, a backup....

May 12, 1999

Well... I am still working on the first part of the project; doing temporary assignments. The issue is that what I save at one level of recursion might get wiped out at another.

I need to craft a mechanism for saving the previous level's partial match while I create then next level's. A stack could do it, but stacks have finite depth. Instead, I am going to make a chain of conchain pointers. I'll malloc new chain members as necessary, and recycle those that have been given up.
May 14, 1999
 Argh! Kludgey failure. Back-off! Back-off! Instead, I'll think about it a while and work another kludge that doesn't save cycles, but keeps imperatives from being exercised repeatedly.

(later)

Argh! Tenacity! I fixed it, but blemished some otherwise pretty code.

Now for mop-up.

May 16, 1999

I am having great fun with the menu scenario.

However, there is a healthy handful of sentence constructs that brainhat does not recognize.

I am going to make a list of the ones I think I want right here:
"do you have [a, any]special?" should be the same as

"what is the special" (which works).

(Later) these are not equivalent, and so should not be made plug replacements for one another.

"what fish do you have?" should be almost the same processing as

"do you have fish?" (which works).

"what else do you have" should probably somehow troll qacands to pick the second best match.

A more specific "what other fish do you have" should do likewise.
 "how is the bluefish?" should get be translated to "what "attribute" is the bluefish?"
 "what is cold?" should cause a search for cold things, I suppose.
 "skip the rice."
May 21, 1999
 What a tangled mess.
May 23, 1999
 I am adding titular assignment as a cause-and-effect proposition candidate.

I am lazy though: i am going to add titular assignment cause-and-effect to comp and speculate, but I am not going to go to the trouble of making a routine like attrques2 or declques2 to answer questions about titular assignment.

If speculate doesn't catch it, then "oh well..."

Of course, I'll come back to this later.

Hopefully, I will have a bag of money too.

After working through titular assignment, I am going to handle adverbs.
 Titular assignment works with debug turned on... core dumps otherwise. I need to make sure that I am "keeping" all of the most critical components.

May 24, 1999

Nah, that wasn't it. I fixed it.

Today, I am trying to provide for statements like

"tell me about the statue."

I figure I will make brainhat recognize a ccattr-prep on a line by itself as an invitation to dump everything it knows about the thing.

Sentences like "describe the statue" or "tell me about the statue" will get pared to "statue" and then picked up by the new rule.

So far so good.

One thing to do in the future: I will want to make associative tags into the context so that I can retreive all sentences about, say, the statue.
May 28, 1999
 I forgot that I need to be able to accept "no" answers to declarations, titular assignment, etc. Particularly, I will need to take the squirreled-away statement (say, "the ball is red") and turn it into the negative ("the ball is not red").

I don't even remember what I have had to go through to negate sentences. Negated CCs have an odd variety of tags, etc. But I can look at the product in the context and make a routine that takes a CC from the positive to the negative empiracly. When I am done, I will be able to use it to understand sentences of the form "not the ball is red" to mean "the ball is not red." The new routine, whatever it comes to be called, will be a post routine.
 Formulas for negating a CC: .in +2 .ti -.1i \(buFor "tobe" constructs, such as "the ball is red":
1) take the ATTRIBUTE and add a "not" EMPHASIS tag.
 For declarations, like "mario sees the ball":
2) add a "not" EMPHASIS tag to root.

Uh-oh.

It looks like I never gave any thought to what should happen for negative titular assignment. "Mario is not the king" makes it to the context with an appropriate EMPHASIS tag ("not"), but a subsequent "is mario the king?" says "yes." This is because pullwhats looks at the parent/child relationship between mario and the king, but not at the statement that established the relationship--the one with the "not." I have work to do on titular assignment.

I think I will punt for now....

Back to the subject at hand: what if I ask "is mario not happy" in

a proposition, and then this gets stored away as "mario is not happy." When the user says "no", and that means "mario is happy...." Well, I will have kind of a mess.
 I guess I have to work about adverbial phrases someday too, ala: "mario does not walk quickly" or "the meal does not come with wine." I'm just going to do declarations and tobe's tonight.
 (more trouble) I never extended check_orthogonal to handle cases where prepositional phrases are orthogonal to themselves.

Need to do that toooooo.... (sigh).

June 1, 1999

I have adverbs hanging from the root.

They need to hang from verbs.

June 13, 1999

I visited TechTalks, a show dedicated to speech technology, in Boston last week.

The world needs brainhat.

I also signed up for a booth for a show in NY in October.

Today, I added a daemon mode to brainhat.

You can now telnet into brainhat directly.

Works well.

July 4, 1999

There have been few notes here because I have been working on a Windows shim between brainhat in daemon mode and and an MS-based SAPI speech engine.

It works!

There's a lot to do however:

I have to make it speak, and I need to add some intelligence to its input selection.

The speech engines are pretty good about choosing the right interpretation of a thing said. But they can use, and will accept, the help of the application that is connected to them. Particularly, the SAPI engines will take bits of context at any time to serve as hints about what might come next. Furthermore, I can create and change grammar files on the fly. This will allow me to focus brainhat on, say, the restaurant demo to the exclusion of others. Last, it looks as though I might be able to torture these speech engines into giving me the best N interpretations of what was said.

That means that I will be able to (with some work) pass the N interpretations to brainhat, and have it figure out the ones it likes best.

July 8, 1999

Continuing along the lines of allowing brainhat to pick the

best of N interpretations, I am going to add a debug flag that will cause chooseone to spit out the score it comes up with, and then pass a copy of -empty- to the post routines that follow.

The SAPI shim will be able to use this debug flag to have brainhat score the N interpretations. I will have the SAPI client keep state on the score, and to choose the best; brainhat will not be charged with interpreting the results.
 The flag debug flag will be SCORE. If one says 'debug SCORE' then chooseone will do its magic.

July 22, 1999

I am at the Flanagan's old house, hacking Brainhat while Paula takes the kids to the beach. Particularly, I am working on the Brainhat client piece.

It works okay, except that there were a number of functions of the SAPI speech engines that I couldn't take advantage of. For instance, I wanted to try limited domain grammars, but none of the three engines (Microsoft, Dragon or IBM) would work as described. Furthermore, the IBM engine isn't working with my SAPI calls at all.
 Anyway, I have created a client and added some background conversation to improve the recognition rate.

Before any conversation starts, I have the brainhat server send down a list of words that it wants the engine to pay extra special attention to. This works well, particularly if I play the same set of words to the engine about ten times.
 The part that is eating me now is that I am trying to take the N best interpretations of the captured spoken english, and send them to brainhat so it can pick its favorite.

I have all the hooks in brainhat.

There's a NOCOMMIT debug flag that tells brainhat not to learn or change the context based on all input that follows until the flag is reset (this gives me a read-only brainaht, by the way). There is a NOOUTPUT flag that stifles all brainhat english output. And there is the SCORE flag mentioned above.
 Within the windows client, I am trying to switch from asynchronous I/O to sycnchronous and back again. I use synchronous at the start, when the client negotiates a list of words with the server.

I then switch to asynch so that I can handle windows messages. I want to be able to switch back to synchronous after a bit of speech is recognized so that the client and brainhat can go back into negotiation mode, and choose the best interpretation.

The trouble is that the socket I/O misbehaves terribly when I go back into blocking mode.

For one thing, it doesn't block, or doesn't do it reliably.

And when I issue a send command, the stuff I actually send may be a pack of NULLs, in lieu of the desired text.
 Where is this taking me... It looks like I am not going to easily get the client back into synchronous blocking mode. Accordingly, I am going to have create a rube goldberg of state flags and counters to carry on the best-interpretation negotiations with the brainhat server.
 When client learns that a phrase has been recognized:

 Pause Speech Engine

 Set Eval Vector Processing flag = TRUE

 Set Start Eval Vector Processing flag = TRUE (set-up mode)

 Reset all associated state variables; best score, etc.

 Send commands to brainhat to put it into debug/eval mode.

 Leave.

In SOCKET_READY

 if Eval Processing flag is on

 recv pending input

 if Start Eval Processing flag == TRUE

 count "debug> "s that just came in.

 if the total is the right number then set Start Eval Processing = FALSE

 fetch speech engine's 1st guess

 if fetch fails, then send brainhat Eval Shutdown Messages, set

 Finish Eval Processing = TRUE, return

 set guess number = 1 (if we have zero guesses then we know we died young)

 send nth guess to brainhat

 return

 if Start Eval Proc flag == FALSE and Finish Eval Proc flag == FALSE

 reap score from result

 increment guess number

 fetch speech engine's nth guess

 if fetch fails, then send brainhat Eval Shutdown Messages, set

 Finish Eval Processing = TRUE, decrement guess number

 send nth guess to brainhat

 return

 (Finish Eval flag must == TRUE)

 count "debug> "s that just came in.

 if the total is the right number then set Eval Processing = FALSE

 if there is a winner among the candidates

 select the winner and send to brainhat

 else

 send first guess from speech engine

 re-enable speech engine after getting something back from

 brainhat.

July 25, 1999

Arg! Many days later and I'm not happy with the result.

I trashed the mess I described above.

I don't remember specifically what problems it had except that it was a tangled pile of trash. I discovered how to get the socket back into blocking mode. This gave me a way to synchronously forward and score potential interpretations, one at a time, but the performance is suddenly abysmal and prone to hang-ups.
 I am considering forwarding the whole vector and making brainhat keep state. Ugh.
July 31, 1999
 I added speech output, and all kinds of bells and whistles. I am now working on a shoot-the-breeze scenario for brainhat and its interlocutor.
· Sometimes 'tell me about X' doesn't work.
· I need to be able to say "If X asks ... then ..."
· An answer to "How much money does brainhat need?"
 That second one is a bitch.

I can create a new place for questions--a conchain like the context or discourse buffers. And I can use the routines and hash tables of declques, attrques and speculate. What happens to comp?

Will I have a simple sentence that reads:

"speaker asks <simple sentence>"?

August 1, 1999

I am using the deduction test mechanism that I already wrote to motivate additional responses to speaker questions.

Imagine that the speaker says "how are you?"

Brainhat answers, and then says back: "how are you?"

I am going to need another ponder routine, like speculate. And I am going to need another conchain like the context and discourse buffers, except that this one will be for questions alone.

Note to self: if I call a new post routine that records a question onto the new saved-question chain, I don't have to save the components over again as long as addtodisc have already been called. It'll save (keep) the elements of the question.

August 6, 1999

Hmmmm...

I ended up with something.

One important nuance I forgot: if I say "if speaker asks if mario is happy then luigi is sad", the evaluation doesn't require that mario be happy, only that the speaker asks.

Accordingly, it is not so important that I evaluate the condition, but only that a hash table fetch occurs; if a hash table match works, then the the speaker must have asked.

That makes my job somewhat easier, until I consider what happens if the proposition reads:

"if speaker asks if mario is happy and luigi is sad then the princess is dead." Now there's a split: I have to accept that the hash is good enough to provide for the speaker's question, but I need to continue on and evaluate whether luigi is in fact sad.
 If I could identify and remove the question from the proposition, I could then 1) look to see if there are any other conditions, and if so, pass them on for evaluation, or 2) take the consequences, substitute the cons that go with the associated tags, and self-talk each to brainhat.
 The routine where all this grieving is taking place is called runqs.c in the ponder sub-directory.
(later)

Cool.

Rather than split the processing at the point that I determine there are no other conditions than "speaker asks....", I let it processing continue and evaluate a proposition with CONSEQUENCES but no CONDITIONS. It works okay.

August 10, 1999

I need to make a few adjustments to the SAPI client. Particularly, I need to make the TCP connection independent of the start-up. I also need to have the client send brainhat the vector of possible interpretations (instead of interacting... I give up on that).

I also need to give better progress feedback to the user. Particularly, I need an arrow to indicate that start-up is underway.
 As for brainhat itself... lots to do.

I need to keep adding more constructs.

I need to eliminate the double and triple proposition evaluations.
 Add comp processing to work with "if the guest is not a woman then the guest is a man." Better yet, fix "the princess is not the king. Is the princess the king?" Everything else.... slog away.
August 18, 1999
 I fixed the problem that caused propositions to repeat themselves repeat themselves.
 Back to the titular assignment problem above: I need titleassign to make an orthogonal relationship--not a parent/child relationship.
August 21, 1999
 Now I'm breaking stuff... I found that ORTHOGONAL links weren't being saved. That meant that something that was not red (say) would get an attribute of red with an orthogonal tag that would (after the cycle was complete) point to something other than red.

(Recall that an attribute that is orthogonal to itself is supposed to score well).
 Anyway, while looking for improvements to make negative titular assignments work, I found some horrible brokeness with attributes... Look at October, 1998.
August 28, 1999
 Ugh. I have been working on slides for a presentation I will be doing in conjunction with UUNET in a handful of cities in a few weeks.

I don't know what's wrong with me; why do I sign up for crap like this?

Anyway, since fixing ORTHOGONAL tags broke orthogonal comparisons, I though I better revisit my table of "How Yes and No Answers Are Decided" and then go back and fix things up. When I have that under control I am going to fix titular negatives--e.g. "mario is not the king" followed by "is mario the king?"
· For a "yes", every REQUIRES tag has to match a concept.
· An EMPHASIS "not" in the root will reverse the score

("yes" becomes "no").

· A negative question will place a WANTS "not" in the root, which will again reverse the outcome.

· If something is orthogonal to itself it will get a silly bonus tag (from orthanswer), which will make it very attractive, though not as attractive as fulfilling all the REQUIREs tag might have.
· Likewise, orthfavr may add a silly bonus tag; orthfavr looks for a REQUIRES tag in the root, and then dives into the CC looking to see of there is something orthongonal to the REQUIRES.
· If the answer looks like it is going to be "yes", the CC is checked to see that the TENSE, NUMBER and PERSON match. TNP are pulled into the root from the VERB and other stuff. They must match corresponding WANTS in questions, pulled into the root by reqpnt
 Hmmmm.... orthfavr calls check_orthogonal, which says (in some code I fixed up not too long ago) that two concepts that orthogonal to themselves cannot be orthogonal to each other. This is breaking the "the ball is not red. is the ball red?" sequence by introducing a REQUIRES link that points to the same copy of "red" as the ATTRIBUTE tag. This is a problem because the ATTRIBUTE is actually "not red."
 I might need a routine that makes sure that ccattrs used in statements and questions are not orthogonal to themselves. This will solve a bunch of problems (I suspect). A particular example would be the following problematic sequence:

>> the block is not blue

the block is not blue.

>> the ball is blue

the ball is not blue.

(next day)

I made a routine called ORTHCONELIM that eliminates concepts that are orthogonal to themselves from the assembly process. It works great for attributes; I applied it to the above and all it well. I am trying to use it now for titular assignments, e.g.:

>> mario is not the king

mario is not the king

>> luigi is the king

luigi is mario wrong!
More later. Very busy these days...

August 31, 1999

I am fighting with orthogonality in child relationships still. Assume I have mario as a child of king, which is orthogonal to itself--"mario is not the king."

I can eliminate "not king" from the candidates at the time the I say "luigi is the king."

However, qacands (whose job it is to find children of things in the context buffer) will see "luigi is the king" and make the extrapolation that "luigi is mario" because mario is a child of king.

I get rid of the orthogonal king once, and then I immediately get it back.
 Here's a different approach: I think I tried it already, but I am going to give it another spin:

Instead of making a parent/child relationship between "not king" and "mario," I am going to say that mario is orthogonal to king, and try to make it work all the way around.
September 2, 1999
 Ugh. It's too difficult to think about right now. Springs shot out in a bunch of different directions. I am going to slay some other dragon for the time-being, and return to this issue after the show in October.
September 3, 1999
 Need support for "if <something> then ask what color is the ball..." This would be good for the sartorial demo.
 Problem with pronouns: "the guest is a woman. she wears pants" Pronoun substitution by lowpronouns is coming back with "woman" as a match for "she." I need to fix lowpronouns. Really, I need to spend a couple of months making pronoun processing intelligent.
September 4, 1999
 I added a kludge to lowpronouns that will not evaluate the OBJECT of a sentence if the sentence is a titular assignment. This kind of makes sense. Since the assignment is equating the two--SUBJECT and OBJECT--I may as well only consider the more specific portion in a pronoun substitution. Consider "the guest is a woman."

September 13, 1999

I am revisiting statements of the sort "my name is kevin" or "the ball's color is red." Really, I want names to work better. Right now, names are things. They should be attributes. Names, particularly, are special cases: when a name (attribute) gets assigned, the possessive thing should also receive a new label, and the label should be marked as a personal name so that it no longer gets treated with an article.

The new earth to be worked here involves the use of possessive for attributes.

I must investigate my options...

"The ball's color is red..."

 ball color

 o o

 \ /

 ATTR \ / CHILD/PARENT

 \ /

 o

 red

September 14, 1999

I looked at post routine apost to see how it handles apostrification. It's pretty simple: a string like "mario's" gets turned into a prepositional phrase:
 Root o

 / \\

 PREP / \\ OBJPREP

 / \\

 o o

 belonging to mario

I don't need the prepositional phrase.

So here's what I propose:

1) Make a few new input patterns that match xxxx's or his-hers to be assigned as a SUBJECT in a sentence match, as follows:

2) Match as so:

 $r`subobj`0\'s $c`attrclass`1 $c`tobe`2 $c`attribute-1`3

 -- or --

 $c`his-hers`0 $c`attrclass`1 $c`tobe`2 $c`attribute-1`3

 -- then --

 $r`subobj`0\'s $c`attrclass`1 $c`tobe`2 $W` `3

 -- or --

 $c`his-hers`0 $c`attrclass`1 $c`tobe`2 $W` `3

The associated MAP would say:

 SUBJECT,OBJECT,VERB,ATTRIBUTE
The OBJECT tag holds an attribute; I borrowed it in a rather sloppy fashion so that I could keep the two attributes apart. The parent concept attrclass is a new one I am creating for children of attribute-1 that may be used as groupings.

Examples are "name" or "color" or "shape", etc.

3a) For the first two forms, I need to make sure (via a post routine) that the attribute stored under the ATTRIBUTE tag is indeed a child of the OBJECT (really, an attribute).

If it is, then I can simply delete the OBJECT tag and continue. If it is not... hmmmm. What should I say when I encounter a sentence like "the ball's shape is red."?
3b) For the second two forms, the CC would be rebuilt

by a new post routine that would:

a) Make the OBJECT be the PARENT of the

ATTRIBUTE.

b) Make the ATTRIBUTE be the CHILD of the

OBJECT.

4) Processing would continue as with any attribute assignment.
September 16, 1999
 Hmmmm.... I created the first of the two forms of attribute assignment mentioned above. I also created a question to go with it, ala, "what is the ball's color." The way the question works makes me suspicious about whether subobj-q-1 is behaving as it is supposed to: investigate.
September 17, 1999
 It wasn't a problem with subobj-q-1. Is was that subobj-q-1 refers to cattr, and cattr matches apostrophes.

The fix: more damn rules.

(A few minutes later....)

Actually, no rules were required.

I simply added new labels--cattr-noapost\--to the cattr rules that I wanted to use for sentences such as "what is the ball's color?"

That seems to work, though I am fighting with a residual bug inside lowpronouns, plus my name assignment routine doesn't appear to be very well thought out.

Later...

More to do.

September 30, 1999

I am chasing a few problems.

This one came up a long time ago.

It has to do with storing modified entries into the symbol table by all of their aliases. An example of the problem.

>> the thief is happy

 the thief is glad.

>> the thief is red

 he is red.

>> the thief is round.

 the red thief is round.

>> break

Break in debug at the start:

debug> list thief

thief-1 (basic pool)

thief-1-37cc (context)

debug> list robber

thief-1 (basic pool)

debug>

Hmmm....

Looking at it a little, I recall an infrastructure problem:

the aliases are symbol table entries that point to the CC, but the CC has no pointer back to the symbols.

That means that a stored concept has no idea how it is referenced, or how many references it has. The only way I can fix this is to add a new member to the concept struct, or to modify the text struct that exists now to point to a chain of char *s instead. This will give me a forward chain to follow. I guess I will try modifying the text member...
October 7, 1999
 I was working on improving Brainhat documentation today. I decided to illustrate how to build a scenario by building one that deals with ice cream.

But... of course.... it broke.

I am going to leave it broken for the moment, but here's the text:

Brainhat has chocolate ice cream. Brainhat has vanilla ice cream. If the speaker is hungry then the speaker wants ice cream. If the speaker will have something then the speaker wants something. If the speaker wants ice cream then ask if the speaker likes vanilla ice cream. If the speaker does not like vanilla ice cream then ask if the speaker likes chocolate ice cream. If the speaker does not like chocolate ice cream then tell the speaker that the speaker likes wierd ice cream and ask if the speaker is unhealthy. If the speaker likes ice cream then ask if the speaker wants a sugar cone.
If I remove the first two sentences, then everything is okay. However, with the two sentences in place, the propositions that follow look pretty well broken. Dunno why.

October 10, 1999

Two weeks from today, I will be making final preparations for SpeechTek '99, at the Hilton in NYC. I will be exhibiting Brainhat there.
 Between now and then, I'd like to make a few changes:
· expand handling of "describe <thing>" s.t. Brainhat first dumps thing and all of its attributes, and then trolls the context buffer for relevent facts, and dumps them too.
· add code to Brainhat so that it can choose a best of N interpretation, or first fit interpretation, without involving the client.
· expand the sartorial demo so that it goes on to talk about where the guest is from.

· fix the client up so that it gives the hour glass when connecting. If I had all the time in the world, I'd un-bundle the connection from the speech engine start-up.
· I have to prepare a sheet that describes why we are at the show.

Someday soon I need to add the logic that allows Brainhat to ask itself whether it knows the answer to a question.

That would improve scenarios where I say things like "if the guest has footware..." I also need to be able to give brainhat some speculation capabilities so that it can engage in gabbing about nothing when the user and brainhat both have nothing particular to say.

Okay, so how will I accomplish bullet #2 above?

I can have the client precede captured speech with a character that indicates multiple interpretations follow, e.g.
 "| the bowel is red | the ball is red | the bowel is red..."
 How would I read the data in?
(later)

Done.

Now I need to make a tweak in the client.

It could use some thought.

A sentence like "you zarg" will match "you."

October 13, 1999

|choice#1 | choice#2 | choice#3 |

October 15, 1999

I am thinking about how I can make Brainhat better respond to "describe <thing>".

I thought I might simply go through the context looking for statements about <thing>.

What should I do?

Here's a dump of the context after a brief conversation.

he is from the hospital. the glad fred is glad. he wears shoes. the fred wears shoes because he has shoes. the fred wears shoes. he has shoes. a fred has shoes. a shirt is yellow. he is not undressed. a fred is not undressed because he wears lowers and a fred wears a shirt. he wears lowers. a fred is not undressed. he wears a shirt. the fred wears a shirt. the pants are red. he wears pants. the fred wears pants because he has pants. the fred wears pants. he has pants. a fred has the pants. he does not wear a suit. a fred is male. he is male because a guest is a fred. he is male. a guest is a fred. he is male. a guest is male because he is a fred. a guest is male. he is a fred. the guest is the fred. he is not undressed is glad is from the hospital. hello. the guest is male. the guest is male because the guest is a man. the guest is male. the guest is a man. he is male. the guest is male because the guest is a man. the guest is male. the guest is a man. a guest is a man. the speaker has a guest. the speaker has a guest because we do have a guest. the speaker has a guest. we do have a guest. we do have the fred. the speaker has something. the speaker has something because we do have something. the speaker has something. we do have something. we do have something. brainhat does hear the speaker. kevin dowd did write brainhat. brainhat from atlantic computing is from atlantic computing. brainhat from atlantic computing is good.
I thought I would skip "tobe" statements. They're covered already. Assuming that I keep track of the things that I already said, and look only for statements that involve <thing>, I might end up with this.
he wears shoes. he has shoes. he wears lowers. he wears a shirt. he wears pants. he has pants. he does not wear a suit. fred wears shoes because he has shoes. a fred is not undressed because he wears lowers and a fred wears a shirt. the fred wears pants because he has pants
The algorithm would be:

take a first pass and gather only sentences that are not "tobe" sentences.

Take a second pass and gather cause and effect sentences that include at least one non-tobe sentence.

October 18, 1999

Other things to do: find out why utter_thing is being so stingy with attributes.

November 1, 1999

Last week I exhibited at SpeechTEK '99.

The reception was pretty good, ranging from "we've been doing that for 18 years" to "Wow! That's neat."

I had good discussions with folks from Sun, Columbia, Fonix, and a representative of the Flanders Valley Language Fund.
 The big question remains: what can I do with Brainhat? Most of the replacement technology scenarios seem weak. In may cases, a map or a search engine can get you to the answer as quickly as anything else.

The answer may lie in an area where we have never imagined an application. Or perhaps the notion of providing a guardian angel or a master scheduler for a group would be really valuable--especially if tied into other voice applications, such as the phone system.
 (later, after my meeting with GMAC) Perhaps I should be aiming for the convergence of PDAs and telephones. It will come soon enough.

I should also be working on the elimination of telephone numbers; people do not need to dial telephone numbers any longer. Maybe the two projects are the same...
 Here are some constructs to work on, fetched from the logs:
 "Fred's dog's head is big" (double-posession). "My wife is a woman who lives with me"
 What I really need is an extension to the MAP line that will permit me to create CCs multiple layers deep, with repeat use of arguments, concept name resolution and substitution and possible multiple roots.

That would make the above structures buildable in one swell foop.

November 4, 1999

(On a plane to San Francisco to meet with Alteon Networks)

I have been trading mail with a woman at NIST who is doing some kind of robot simulator.

She wants to use Brainhat as the intelligent front end for the robot.

She made a specific request that Brainhat be able to recognize constructs like:
 "Take item A and put it next to item B"
 She'd like support for alternate forms such as:
 "I want item A next to item B"
 She also forwarded a grammar for controlling the robot. I don't have it here; it is in a mail message at work. Anyway, the project is kind of interesting. I told her that I would help her out. I am going to add the first construct to input-patterns now. The second can be simply stated as a proposition.
 Hmmm... (later). How should I be handling anaphors? I have just ignored the issue until now. On top of that, pronoun processing has been a huge kludge to-date. It may always be. Anyway, with anaphors, I suppose I could stash away the first non-pronoun I meet and make it available for the later part of the sentence. So if I read something like "fred was happy because he saw the king", I could include "fred" into the list of candidates for pronoun processing.

At some point I have to make pronoun processing smart enough to ask questions, ala "who saw the king?" in response to ambiguity. This is such a neat idea that I might do it sooner rather than later. For now, I am going to modify lowpronouns to evaluate potential anaphors. It is a reasonable thing to do, I think, since any work I apply now will transfer to when I add disambiguation later.
November 7, 1999
 Working toward robotics, I can say "take the ball and put it in the water."

That parses okay.

The "in the water" part should be assigned like an adverb though, just like "comes with the fries" did in the restaurant demo. Another, more pointed case would be a sentence like "put the ball in the water." Again, the "in the water" part is more of an adverb for "put" than an adjective for "ball." Now consider this case: "take the ball in the water" It could go either way.

If the ball is in the water already, then there is one clear meaning. If not, then there is another. Like the pronoun processing discussed a few days ago, I need to start thinking about more self-talk within Brainhat to help dismiss ambiguity.

I was thinking about how I might punt.

Any ptrans could treat the prepositional phrase as an adverb.

Maybe I should just do the right thing... with pronouns too.
November 25, 1999
 Thanksgiving. I am coming off my Brainhat/SpeechTek hangover, and starting to let my imagination run wild again. I have given more thought to the robotics stuff, and decided that I need to create some extensions for passing processing off and retrieving the results.

Robot interaction would turn out to be simply a special case of that.

I'll summarize later.

Also, I am wondering about the distribution again.

Should I close off the source?

I want to make it easier for people to integrate Brainhat and develop vocabulary for applications. So far my notion that people could actually use the source hasn't panned out.

And I have a zillion other projects to do. I was thinking in the shower that I might see if I can get student to help me organize the grammar over Christmas break....

(later)

I am going to spend some time making a binary distribution

a better option.

December 1, 1999

I wrote a simple cpp for binary distribution.

Here's a bug from the lucy scenario:

lucy does not like spiders (given)

is lucy surprised? (yes)

lucy sees the spider (no reaction ... brainhat should have said that lucy was frightened).
December 4, 1999
I seem to lose attributes within declques2. In the example above, I would have entered declques2 with pretty as both an attribute and a requirement, but exited with the requirement alone.
 Oh yeah: we looked at a 1+ million dollar home in West Hartford and agreed in principal to sell the business.
 OOoooo.... The trouble is that the question

'does pretty lucy not like spiders' matches

'lucy does not like spiders', taken from the context.

Each of the components matched in cfind:

the SUBJECT, OBJECT and VERB comes out of the context from a time the predates Brainhat's learning that lucy is surprised. My changes to utter_thing a while ago made it so that Brainhat's self-talk asks: "does surprised lucy not like spiders...." The answer is "maybe" because the lucy from the context that doesn't like spiders isn't surprised.
 I thought I had a ponder routine to fix this sort of thing... I need to update old uses of a concept (lucy-1-3b00, for example) to refer to never, non-orthogonal revised versions of the same concept.

December 30, 1999

I am ripping off ponder routine parentpick to do the job of updating the context.

These are notes from the routine:

This routine is a rip-off of parentpick. Parentpick's job is to skip through the context buffer looking for references to (virgin) concepts from the basic knowledge pool that have been subsequently embellished and made part of the context. This way, earlier statements in the context can get updated by things brainhat learns later on.
 Anyway, that's what parentpick does. This routine does a very similar (in fact, somewhat redundant) thing: it skips through the context looking for older, less-embellished context-resident copies of concepts that brainhat has subsequently updated. When it finds them, it replaces the old concept's links chain with the newer concept's links chain, thereby giving all old copies of the concept the same properties as the new one.

Note to self: I might someday want to replace the singly linked tree structure that makes up a concept with a doubly-linked form. That way, I could find all references to an older form of a concept and repoint them at a newer form. I could also include a reference counter into concepts that could tell (when the count goes to zero) that it is safe for a concept to be deleted.

January 1, 2000

Happy New Year!

Add to the heap of things to do:

· Make the context hashed in addition to being sequential.
· Add memory management for strings
· If the context were hashed, I could replace the primitive updatectxt routine I just wrote with one that looks (hashes) for declarations of the sort "ball verb thing", where ball is the concept that has just gotten a new attribute.

· Add some better processing for when the speaker wants to talk about 'other' or 'different' things, as in the sentence 'what else do you have?"
· Increase the use of self-talk for pronoun resolution.
· Round out the set of sentence types recognized by runqs and Ispeculate.
· Interfaces and documentation.
· Improvement in imperative mode to enable robotics and command and control.
· revision control.
· make "want to" and similar forms into their own verb tense.
January 13, 2000
 Tomorrow we close on the West Hartford house. We are in Wethersfield for another 2 weeks. I haven't exactly told the neighbors yet.
 I have been working on the robot interface a little bit more because I think that will generate a fair amount of interest in the program.

Here's my proposed architecture:

We start with a required 'thing' called xrobot.

In 'words', we make children of xrobot, and these become our actors, ala:

define
robby

label
robby

child
xrobot

The xrobots (actually, their tags numbers) become associated with TCP ports when the user says:

"robby's port is <#n>"

That causes Brainhat to attempt to open a TCP connection to robby on port #n, and record a succesful completion for use in subsequent commands and I/O completions.

Next, we have a set of simple imperative statements that recognize statements of the sort "tell robby to put the ball in the bin." Exercise of such a statement will result in a primitive command to robby like "put ball bin", perhaps via different speech routines (robospeak?).
 Here's the tricky part: we use the imperative in a statement like "if brainhat puts thing1 in thing2 then tell robby to put thing1 in thing2" to pass jobs down to robots under brainhat's control. While the command is being exercised, Brainhat keeps it in the present tense.

Brainhat needs 1) to know when the command has completed, and 2) to know if the command completed successfully, and if not, why. That means that we need to keep track of Brainhat's part and robby's part and correlate them at some time in the future.

I can recognize this special case because I can tell that the actor in part 2 is a robot:

"if brainhat puts thing1 in thing2 then tell robby to put thing1 in thing2"
 The first part, "brainhat puts thing1 in thing2" becomes part of the context and get placed in a data structure that keeps track of concepts that represent actions farmed out to robots. The farmed-out concepts get a tag that identifies them uniquely.
 Here's the tie-in to the robot: the command issued to the robot also receives a copy of the tag, ala:

1044:put ball bin
where "1044" represents the tag number.

When the robot completes the request, it responds with:

tag#:completed(Y/N)[:reason]
A few examples would be:

1044:Y
or

1044:N:do not have ball
In the event of a "Y" completion, Brainhat would pull the statement (1044) out of the data structure, change its tense and self-talk it. If the answer is "N", then Brainhat will pull the statement, negate it, and self-talk it as part of a cause and effect statement.

The cause will be taken from the reason field (which must be parsable to Brainhat). So, the above example would become "brainhat does not put the ball in the bin because brainhat does not have the ball"

Brainhat is supplied as the SUBJECT in all the reasons.

Paula is bugging me.

January 17, 2000

I am on my way to England and then Germany to talk about a deal with Integralis.

The house is just terrific.

Paula is miserable, as usual; unhappy about everything and anything...
 Using RCS. Giving it a spin...
 Anyway, I am going to get to work on the robotics. I'll start with an easy job: I am going to create a structure that will keep the commands in progress along with their tag numbers:

struct robocmd {

struct concept *con;

int tag;

struct robocmd *next;

};

Next, I'll create the initialization code for the structure.
 Done.

I will also need a data structure to record the succesfully opened robot ports. This will need to associate the socket fd with the robot's tag number:

struct roboport {

 int fd;

 int tag;

 struct roboport *next;

};

Done.

Plane delayed too long to meet my connecting flight...

January 18, 2000
Sitting in the same airport seat as yesterday.

Now, I am going to work on "robby's port is #".

Should port be a thing or an attribute?

What has become of the statement "scott's address is xxxx?" I'll start with that as a template though I am suspicious that I might have abandoned treating address as an attribute some time ago.
 After looking, it turns out that the 'scott's address' rule applies, wherein 'address' is a thing. I created xrobot and port and the pattern match "robby's port is 2323" works as desired. Now I am going to create a post routine to recognize when the SUBJECT (robby) is a robot. When found, it will attempt to open the TCP connection to the robot.

January 21, 2000

I changed the xrobot assignment to accept IP-address[:port].
January 23, 2000
 The TCP session creation, tracking and closing all works okay. Asynchronous I/O is behaving too.
 Now I need to work on the imperative statements that will turn something like "tell robby to put the ball in the bin" into "put ball bin" (or facsimile) robot commands.
January 24, 2000
 ...partway through this. I created a rule imp-action-4. I need to fix checkcommand.c to eliminate the turds left from my work for NIST.

February 8, 2000

I am in the middle of modifying checkcommand.c for robots. If I say "put the ball in the bin", where "put" in an extaction then it gets recorded as "brainhat puts the ball in the bin."

The action of the robot will be recorded along with a completion tag in a structure that tracks pending actions.

Brainhat will be the person performing the action (taking credit for the actions of the robot...). If the action completes successfully, Brainhat will take the credit for the action at completion. Procedurally, the recorded action will be placed into the context in the past tense.
 If the action fails (the robot returns a failure), then the statement will be converted to past tense, negated and combined with the reason returned by the robot in a cause-and-effect statement.
 1044:N:do not have ball In the example above, for instance, the statement that starts the action (say, "brainhat puts the ball in the bin") will be combined with the reason returned to say:

Brainhat does "not" put ball in the bin because Brainhat "do not have ball"
 Hmmmm.... I guess I covered this already, above.
February 10, 2000
 I want to modify my plans a tad: I want the reason that comes back from a failed robot instruction to include a subject:
 1044:N:robot does not have ball
 "robot" will be a synonym for "brainhat." That way, I does need to guess when a subject needs to be applied versus when I have one already. Consider if the response was:
 1044:N:the ball is red
 The subject is the ball in this case.
 Now assume that the robot's name is "kelvin."
 1044:N:kelvin does not have ball
 This too would be a resonable reason for rejection.
February 11, 2000
 Now I am at the point where I need to create the routines that issue robot commands, and the parsing to intercept the robot's responses.
February 14, 2000
 On the train... Integralis deal supposed to go through in couple days, but I am worried that their stock price is too high.
 The test client, roboipc, and brainhat are interacting pretty well/ I need a few other tweaks yet. In the interim, I thought I might give some thought to the robot command language. Right now, I am simply dumping output from dospeak to the robot.

I expect I need a more robot-friendly mechanism.

What about something like this:

start

tag=4839

command=put

object=ball

color=red

target=bin

orientation=in

end

This could be extracted from "put the red ball in the bin."

The tag comes from above.

The orientation is simply the preposition; the target is the object of the preposition.

Attribute, such as "color" can get their LHS from an algorithm that crawls up the parent chain until it reaches a child that is one level below attribute-1.

Other stuff to worry about:

how do I handle "get the ball and put it in the bin"?

February 18, 2000

"robby did not put the ball in the water because mario is sad"
 The issue here is that the compound "x because y" doesn't match, which eventually leaves the "x" part to match.
March 8, 2000
 Made a change in rels.c: uncommented a line in check_orth_things where brainhat checks to make sure it is not checking a thing against itself. The line was commented for a reason I don't recall. It broke the following test:
 mario is in the river. is mario in the river?
 If something breaks, look for this line:
 if (args1[0]->con->tag == args2[0]->con->tag)

 return FALSE;

Here's another one:

A month or so ago, I created a routine called updatectxt that post-operatively fixed old references in the context.

I discovered today that it broke something else.

From test19:

Red mario is in the water.

Blue mario is in the building.

Where is red mario?

The answer came back that mario is in the building.

The problem probably is that updatectxt updates without paying due respect to the fact that the concept being used for the update is orthogonal to the one currently in place.

Looking into it....

updatectxt called check_orthogonal to see if the concept being updated is orthogonal to the updatee. It was the wrong routine to call. check_orth_things is the wrong routine too; it looks for things on the end of an orthogonal link. What's hanging around for comparing things for orthogonality?
(later)

Ugh. I created a new routine within rels.c, but that needs help too.

(2 minutes later)

Fixed!

March 12, 2000

I have a new laptop--a Sony picturebook.

It is very small and about 4x faster than my old laptop.

I have been thinking about where I will go with Brainhat now that Atlantic has been sold. I have at least two more years with the company. In the meantime, I thought I might form the "Brainhat Development Corp." (BDC)

The goal is not to create a distraction from the Atlantic work.

Rather, it is to have an established, fundable company at the end of two or three years. Who knows, if I sell some stock, I might even get some work done (by others) in the interim.
 First project: make the windows version of Brainhat run with sockets.
March 27, 2000
 Ugh. It took me the better part of two weeks to debug this windows speech crap. Forever, I have had a problem producing output on anything but a Soundblaster

Live! card.

The answer appears to be that I was using the wrong datatypes within the Windows speech SDK.

Anyway, I need to fix up the client and get back to work on this.

March 29, 2000

The sentence

"mario did not put the wet ball in the water because the ball is red" does not get recognized correctly. Also, I need to distinguish between the adverbial use of "in the water" and the adjective use of "in the water" if I haven't already started taking care of that.

Look at imp-action-1a.

It matches sentences that have a external action (like "get" or "put") and assumes that the prepositional phrase will be used as an adverb. This isn't always correct. If I say "get the ball in the water," I probably mean that the ball is in the water, rather than meaning that Brainhat should go into the water to get the ball.
 I guess that I need to have two forms of extaction: one that takes prepositional phrases as adverbs, and one that takes them as adjectives. Actually, I need something even more elaborate:

I need to be able to differentiate based up context.

How do I do that.... hmmmm.

You know, I have to go back and revisit pronouns some time too.... same issue.

I am creating another branch off extactions called extactions-v to be those actions that should have a prepositional phrase that is associated with a noun be taken as an adverb.
April 2, 2000
 Need support for questions of the form "is mario not a ball?" on input, and I need a titular assignment with a not statement at the top to voice the orthogonality,

e.g.: "mario is not a ball."

A little later:

I made progress.

However, negative titular assignments are not scoring appropriately.

There's definitely work to do.

April 5, 2000

The troubles I am having with titular assignment and orthogonality go back to last October.

Assume that mario is the king and luigi is not.

Looking at what makes it to yesno, the question "is luigi the king?" becomes

"is luigi mario?"

 o luigi

 / \

 ORTH / \

 / \

 / \

 king o \ REQUIRES

 \ \

 ^ CHILD \

 | \ \

 | \ \

 \\

 o mario

To answer the question, you have to say:

"is the subject (luigi) a child of the object (mario)?

This already works as desired.

The next question is "is the subject orthogonal to any of the objects parents?"

If the answer is yes, then the answer to the question should be "no."

In both cases, a "not" will reverse the answer.

I'm going to need a new orthogonal check for things that are orthogonal to another thing's parents.

Perhaps I should just make check_orth_things be more general.

This also seems like it would be a good time to rename all of the "check_orth...." routines so that their labels better fit their functions.
April 9, 2000
 Revising check_orth_things: given thing1 and thing2, get a list of all of thing2's parents.

Check to see if thing1 is orthogonal to any of them.

That is:

1) compare all thing1's orthogonal links with the parent.

2) compare all thing1's orthogonal links with the parent's orthogonal links.
 Swap and compare thing2 to thing1 in the same fashion.
April 12, 2000
 mario is the red block
 0 is mario the blue blocK?
 The question gets reorganized to be "is mario mario?" "Blue block" and "mario (== red block)" should be orthogonal.
April 13, 2000
 I have to revisit the orthogonality routines and work on lineage.

The sequence above fails because brainhat does not recognize that "blue block" and "mario" are mutually exclusive.

April 15, 2000

I wrote down some good notes for improvements to address the questions of testing for orthogonality in lineage, and then I left the notes at work. One thing that was clear was that I needed to improve all of the orthogonality tests to include parents.

In fact, I ought to condense them all into one routine, and have that routine discover the form of the passed-in con and then delegate to component routines... in a C++-like fashion.
 The other change was in orthfavr: I need orthfavr to look at the orthogonality of lineage, in addition to orthogonalty of attributes.
April 17, 2000
 I have been making some progress with the above issues.

I went back and fixed an issue with check_orth_things; one of the improvements that I made had a problem. It turns out that orthfavr already had code that looked for orthogonal things.

Once I fixed check_orth_things, orthfavr started to behave better.

If I said that mario was not the ball and then asked if mario was the ball, brainhat would say "yes." (backwards).

The next improvement I need to make is to add a notion about the orthogonality of things to orthanswer.

orthanswer is like orthfavor except that it will also add a "not" at the top of the concept in addition to an orthogonality bonus.

April 22, 2000

I am looking at txtwhy.

The post routine takes the contents of a global, the answer stuffed by a previous question, and passes it onto why and \fwhy2\fR.

I created the routine before I created a discourse buffer.

It seems that the discourse buffer would be the right place to look for the last idea expressed--the thing the speaker is asking "why" about.

I could get rid of savestmt and change txtwhy.

I should look into the discourse for the first declaration or tobe statement I find. If there is a cause-and-effect, I should grab the cause(s) and try to use it (them).
April 25, 2000
 Given the following two questions, I get different answers.
 i am happy then you are sad.

 0 why are you happy?

 0 why is brainhat happy?
 Don't know why yet.
 About 30 minutes later... the problem is that the verb tense is significant; if I ask why are brainhat happy, the answer comes out right. I need to promote something to the infinitive somewhere.
May 2, 2000
 I promoted the verb I fetched from the discourse buffer (or context) to the infinitive.

This is causing me some heartaches right now; I may need to curtail verbpars reach so that it doesn't promote verbs right into the stratosphere.
 I also fixed why2 so that it performs yes/no tests using selftalk instead of trying to get the answer by calling yesno_score directly.

This works really well.

Now I need to update why in a similar fashion.

(later)

Done.

May 3, 2000

I am going to attack some developmental issues.

I want to be able to recognize more sentence forms.

I am going to work on the following three forms

(by example):

i want to see the ball.

i don't want to see the ball.

i would want to see the ball.

i didn't want to see the ball.

<subobj>[<enabler>]<desire><verb>[<subobj>]
 i want to be happy.

i did want to be happy.

<subobj>[<enabler>]<desire><tobe><cattr>
i want to be the king.

i did want to be the mayor.

<subobj>[<enabler>]<desire><tobe><subobj>
The trick is how to represent desire in the stored concept.

My thought has been that desire could be a verb tense.

In operation, I would need to harvest the tense from auxiliary verbs (enablers) and then combine it with desire-as-a-tense. The challenge is that I have worked to avoid having multiple tenses on concepts (on attributes, anyway).

And I certainly want to avoid having combined tenses, such as past+desire; this would expand the pool of tenses considerably. On the other hand, this may not be a big deal... Gotta think about it.
May 8, 2000
 (On the train on my way to see Dave Sperandeo in Philadelphia)
 Another twist that might work: I could treat the whole first parts of 'desire' statements as enablers (auxiliary verbs). So, for instance, I might block off the desire and the auxiliary together, as in:

I [would want] to see the king.

He [wanted] to hear music.

Mario [didn't need] to eat.

I [must] sleep.

The tense comes from the 'desire' verb.

The person and number come from the subject.

If this would work, it would create more verb tesnses than I had originally bargained for, but it would reduce the amount of new work I would need to do to almost nothing. I will try.

A little later: so far, this approach hasn't served me too well... The problem is that 'want' gets eliminated as a verb, I guess. Another issue is that the infinitive form of the verb gets promoted to its parent. So, for instance, the sentence "i want to see the ball" gets recorded as "i to-sense the ball (desire)."
 If I were to do it the other way, that would mean creating a new rule that looked for desire statements before more general purpose statements. I would need to be able to extract the tense in the case where the past tense was used ("I wanted to see the ball"). All other tenses would be indicated by the associated enabler. Hmmmm. I'd also have to create special routines to voice desire....
 The next problem to rear its ugly head is: how do I interpret a question that treats 'wants to' as an enabler? Imagine the question being: "what does mario want to see?" Here we have "what <enabler> <subject> <desire> <infinitive>" .
 Ugh. If I make desire a special case, then I am going to have to provide all kinds of support for it, including the ability to use it in propositions, self-talk, etc.

Here goes....

Steps:

1) Create 'desires' for verbs that demonstrate a subject's need for something. This collection should not share 'action' as a parent.

2) Create a rule that recognizes the first form:

<subobj> <enabers> <desires> <infinitive> <subobj>.

This has to appear before any patterns that use the desire verbs.

3) Try it.

Well, that worked.

The issue is that I 'IGNORE'd the match for a child of 'desires' in the pattern MAP. This means that the concept gets stored as a statement without any notion of desire.

There are a couple of places to go from here:

one is to provide special case handling of desire, perhaps via some dedicated tags, The problem is that I will have to rework everything from recognition to propositions if I create a new tag type. The good news would be that verying degrees of desire--want, need, require--could be incoded into this new tag type.

On the other hand, if I massaged desire into TENSE, as I started out doing, then I wouldn't have to much of anything--perhaps some of the output routines. Here's the trick: I am going to need a way to combine desires + verb tense (as gleaned from an enabler, the desire itself (wants versus wanted, for instance), or a default, into a single, new tense. So, for example, desire + present tense would be combined to create (desires-present). I will need a mapping routine of some sort to relate the non-desire tense to the desires-tense.

This should probably be a table, initialized upon start-up.

The structure would look like this:

struct tensex {

int oldtense;

struct concept *newtense;

struct tensex *next;

};

(later)

I have implemented two rules for input--on that deals with sentences like "mario wants to see the ball" and "mario does not want to see the ball." I would now need to work on the output. Other places to implement 'desire' include in titular assignments. tobe declarations and simple statements for cause-and-effect.
 Along the way, I have gotten a little weary of wrong verb tenses being spat back at me by (I think) \fgetexacttense\fR.
May 30, 2000
 This is a hacked up version of code incorporating experimental pieces to accommodate J.D. Warren's subrogation code.

The experimental stuff can be identified by the word

"SUBROGATION" appearing in the data and post directories.
 Anyway, while they think about whether they want to use brainhat, I am going to return to desire. As I left it, the code could understand desire associated with actions. Desire is assigned as a tense. What's left is to work through to the speak routines s.t. desire is expressed correctly. Also, I will need to add desire as a simple-statement (for propositions) and expand to include desire for tobe and titular assignment.
 How to voice it?
 <subobj> <enabler> want <infinitive> <subobj>.
(later)

I made a pair of enablers that expressed "wishes" directly.

I am thinking that I need to work a little harder to make desire uniform in conjunction with existing elements of tense.

I am wondering if "enablers" as they appear in input patterns should perhaps be a subrule that handles more complicated forms such as "want to", "did want to", "did" etc.

Ugh.

June 1, 2000

In Florida w/Ian Calcutt.

I have a few precious minutes to think about desire processing. I need a list:
 .nf I would want to see the king. He wanted to hear music. Mario didn't need to eat. I must sleep. I want to be the king. I want to be happy.
 I did want to hear music. What did mario want to be? Does mario want to see the princess? He wants to see the ball.
 Hmmm... maybe the objects of desire should be treated like adverbs. I already made this concession when was looking at adverbial prepositions as in "i live in the water." Perhaps "i want to live in the water" should have "to live in the water" tagged as an adverb.

Or better yet, as an object.

Is "to live in the water" that different than a "red ball"?

Or perhaps I need another tag.

"I did want to hear music" might be expressed as

"speaker wants that speaker hears music"

Sure looks like an object....

June 5, 2000

It seems to me that the best thing will be to go back to the notion of events (things) and make them the object of desire.
 "I want to hear music" is "the speaker wants 'the speaker hears music'". This will also help with sentences like "Mario knows that the ball is red", which will become "mario knows 'the ball is red'". What does mario know? Mario knows that the ball is red....
June 11, 2000
 So little progress.... I was supposed to be in Florida at a wonderful boondoggle thrown by UUNET.

The morning flight was cancelled (Sunday), and between then and the rescheduled early evening departure, a storm blew up and dropped bunch of trees in the yard.

Two went into the pool; a beautiful tulip tree fell in front of the house.

At least four other trees were felled.

And we lost power for two nights.

Anyway, Rick and Angela have been having a blast in Florida....
 Now, what do I need to do? I need to make simple sentences a form of subobj for use in certain sentence positions.

I need to make the speak routines produce simple sentences as subobjs.
June 15, 2000
 "I want to see the king." is really
 "speaker wants speaker sees the king."
 I can get the subject of the second part ("speaker") as a tucked-away anaphor candidate. I should be able to leave the verb, "to see" in its infinitive form.
define
csubobj-stmt1

label

csubobj-stmt

rule

$c`action`0[$r`csubobj`1]

map

VERB,OBJECT

postp

POLARSET

postp

ANASUBJ

The routine ANASUBJ will simply add the contents of the stored away anaphor candidate (see anaphors) as the subject of the statement. N copies are made; one for each stored anaphor candidate.
July 1, 2000
Fix:

"I want to see the king." followed by "why?"

July 2, 2000

I have been expanding the ability of the program to use statements as objects (same example as above: mario wants to see the king, wherein "to see the king" is the object).

I created a sub-class of csubobj in the input-patterns file for returning statements as objects.

The subject could be a statment too, as in "that mario wants to see the king means that the princess is ugly." The trouble is that if I can match a subject of that sort, I'll consume whole sentences while searching for a subject in less exotic cases, e.g. "that ball is round"
July 4, 2000
 Someone wrote me asking about VoiceXML. I listed Brainhat as a VoiceXML supporter, though I didn't have any sense for what I could do with it.

The trouble is the VoiceXML is very CFG-like; you can't have a free-form conversation. All the same, it seems to me that it might be a good idea to extend brainhat to be something of an XML web server because the rest of the industry thinks that it is going that way.
 On another note: I signed up for the speechtek show in NYC again next fall.
 I broke "i am happy because you are sad."

(fixed)

Now, I am looking at the problem with the statue scenario:

I run the scenario and ask "is the head valuable?".

The answer is "yes."

When I ask "why", I get a silly answer.

The problem appears to be that the discourse buffer includes a non-standard form of an attribute declaration.

Later... the problem is that post routine parequires removes the REQUIRES tag from the top of the question on its way to yesno (the question is question-decl-3.

If I take parequires out of the list then the "why" works. However, the answer comes back as a maybe (I expect that). Question is: how do I retain the attribute or requires tag at the top of the question without screwing up the yes/no interpretation? Looking at the CC that is passed to yesno it appears that

I can look for the REQUIRES tags in the SUBJECT and pull them to the top. Ugly? Necessary?
July 6, 2000
 I solved the problem by turning REQUIRES tags into

ATTRIBUTE tags.

This should have been a bad thing to do except that the questions were only bound for the discourse buffer, not the context; changing the tags has no lasting effect.
 I am in Dulles airport, on my way to a meeting with

Bell Atlantic a little bit later on.

I have now implemented desire in several forms.

Examples are:

"I want to see the king."

"I want mario to see the king."

"I wanted to be happy"

"I want the princess to be happy."

"I want to be king."

"I want you to be princess."

The next steps are to be able to answer questions about desire, such as "does mario want to be the king?" I can do this pretty simply, I think, by extending vrfy_child to deal with simple statements.

Everything is of the form "does so-and-so want <stmt>?" Looking into it.

I found a problem with some of the processing above.

If I say "I want the princess to be happy," I sometimes get "the speaker wants that the speaker is happy."

This is because the speaker and the princess both get stored away as candidates for anaphor processing. How to fix without breaking the general nature of anaphors?
 A few minutes later.... the problem is that the 'not' forms I just added, though not matching "i want the princess to be happy" do cause a "speaker" to be stored as an anaphor candidate.

The subsequent match of "i do not want the princess to be happy" pulls "speaker" as the subject of the statement "to be happy." How to fix?

I could, perhaps re-order statements.

Really, I shouldn't have failed matches changing the state of the list of anaphor candidates....

Later.

Later.... maybe I'll hack anaphors2 so that it starts the list of possible anaphors over again each time it start.
 Later... the change I made to parequires un-prettied something that brainhat had been handling quote well. This test:
 the block is pink. is the block red? used to return "yes, the block is pink." After the change, I end up with "yes, the block is red."

That's not completely wrong, but it isn't right enough either. I am going to look for another way to get the discourse bufffer-resident copy of the question into good shape. Particularly, I think that I shall have to create a routine that is the opposite of parequires--one that re-adds the REQUIRES tags to the root, to be called after speak. Done. Plane boarding.
 Back home: Now I am going to add more functionality to vrfy_child so that it can tell if one whole statement is a child of another, much the way I do it already with prepositional phrases.
July 9, 2000
 The worked great.

I have to add functionality for SUBJECT-VERB-ATTRIBUTE to vrfy_achild. I need to create input patterns for sentences of the form: "does mario want that the princess is happy?" I need to accommodate desire in propositions.
 But first, I have to do this crappy audit for a customer....
July 30, 2000
 I have been experiementing with VoiceXML, a mark-up language to enable voice communication over the web.

The standard is a little bit young, and a little bit restrictive. For the most part, interactions are limited to to context free grammars, which takes some of the spontaneity out of talking to brainhat.

On the other hand, the CFG really improves the recognition rate. I have been experimenting with IBM's implementation.
 The exciting thing is that I think it will be straightforward to turn Brainhat into a kind of VoiceXML web server.

I am sure it will be a popular addition to an effort that is grappling with hand-coded menu scripts and other forms of crufty exchange....

A couple of things will be necessary:

1) I will need to craft a CFG that covers most of the kinds of things I expect people to say in a given scenario.

2) I will need to be able to initialize brainhat to serve web traffic to a particular port. I picture a "-w port#" combination.

For now, I will assume that the scenarion I want to run is in the brainhat.init file, and that the daemon will be ready to spawn a scenario-populated child upon connection.

3) I need to keep state between successive hits from a VoiceXML browser.

I certainly don't want the state on the server, so I will have to keep it in the client.

As a conversation progresses, I will be returning new pages with new brainhat bits of wisdom. I will plan to keep the things the user said in previous pages as hidden/unused initialized parameters in the returned pages.

That way, when they come back to me (on the next submit), I can pull them out of the document, replay them in order to brainhat, and pick up where I left off; brainhat will be treating each new connection as if it has never met the person before; the person will re-present brainhat with everything it said previously, thereby bringing brainhat back up to date.

4) VoiceXML documents have some notion of being part of a common root.

I think this allows me to have a pre-loaded general CFG (and more specific page-related CFGs). I will start every brainhat conversation with a root page that loads the CFG and immediately delegates to a child page.

Each subsequent page will depend on a cached CFG.

Here goes....

Aug 4, 2000
I was thinking that all the asynchronous behavior that you can have with robots would have to be cast aside with a browser-based interface because there is no notion of asynchronously notifying a browser of a state change. It occurs to me though that one could make use of META-REFRESH tags to make the browser go back an check for an update.

Question: does a META-REFRESH look like a normal page fetch?

I won't want to replay all the statements that brainhat saw when it first pulled up the page. Another element to think about as well: if there are robots involved, then the brainhat daemon will have to remain running (with state) between connections. Hmmmm.... This is getting more complicated.

I supposed that following initial contact, brainhat could redirect the user to another port. All subsequent updates could go to that port as well. Now, though, I'll have to leave copies of daemons hanging around waiting for subsequent connections. How long should they wait? Each copy of the daemon is going to be a memory hog. Maybe the initial load of a daemon should live in shared memory....
Aug 5, 2000
 I've decided that the daemons should be persistent. Otherwise, Brainhat conversations can be little more than a parlor trick. This will have the immediate benefit of easing the coding of the httpd functionality, with the added server burden that comes with holding connections open for a time.
Aug 18, 2000
 It was a painful row to hoe, but it is starting to work! Notes to self: selftalk is returning just the first utterance in a potentially mult-part response (as it probably should). If I ask a question "is the ball red" I might get an simple "yes" as an answer.

I know brainhat is dying to say "yes. the ball is red"

I want all of that to come out of the vxml browser.

We are going to the beach tomorrow.

Vacation... (?).

Aug 24, 2000

I just reworked the web pages.

Brainhat todos:

1) make a version of tellcc that will voice all of the available concepts, not just the first one. (See above).

2) Make the portion of main.c that reads from brainhat.init use the hand-crafted input routines instead of getline.
3) Add some processing so that I know the host address upon which I was contacted so that I can re-write redirection URLs using this address as a destination.

Question: how am I going to deal with translating gateways?

If the Brainhat server is behind a translating gateway, it will rewrite the next URL for the wrong address...
 Going next door to see Dad now (we're at Flanagan house). Lisa took mom up to see the doctor.
Aug 27, 2000
 I have been looking into why the question "why?" causes a segv in the program if there isn't any discourse yet, and why the question "why?" causes a segv at any time in the httpd version of Brainhat.
 Routine txtwhy is supposed to fish in the discourse buffer for a question or answer that might have made its way there during the course of a conversation. If nothing is there, then txtwhy passes the conchain unmodified to the routines above it.

This causes some heartache in speak.

Don't know why yet, though the stuff being passed appears to be a Root with nothing attached.

The compound reason the httpd is failing is that addtodisc doesn't add anything to the discourse buffer because all of the exchange between the brainhat and the browser is created with selftalk. In that mode, speech is shut off (speech_level > 0), which means that addtodisc skips the opportunity to add anything. Hence, the discourse buffer stays empty. I need a way to get the discourse buffer updated, both for the httpd mode and for robots, which also use happen to use selftalk, without otherwise allowing unchecked updates for internally generated questions.
 Just checked this theory out by allowing addtodisc to work even if speech_level != 0. The problem with httpd Brainhat went away.
Aug 28, 2000
 I want to fix the above problem. The speech_on variable that controls whether or not an utterance gets added to the discourse buffer is (as the name implies) also associated with whether the output gets voiced to the user.

I want to uncouple the concepts of speaking out loud and updating the discourse buffer (and perhaps the context buffer.... I haven't dug that far into it yet.) I am going to do it by permitting records in the discourse buffer in instances when the speech_level variable matches that as set when selftalk is invoked.

Aug 29, 2000

Something that seems obvious now:

I need to buffer the output from speak and other routines so that I can control where and when the output gets delivered.

The problem that made this apparent was that some of the output generated by ponder routines wasn't getting included in the output from selftalk.

It never mattered before; if some output spilled into stdout independently, it was going to the right place anyway. In the case of the httpd, on the other hand, the output needs to be wrapped in VXML.

At the same time, I will clean up some of the speech state variables that are floating around (perhaps).

September 7, 2000

I'm on a plane returning from Reston.

Dave Sperandeo and I went to see people from Exodus, UUNet and Bell Atlantic.

Good trip.

I just finished fixing the speech output buffering that

I mentioned a few days ago.

Now I am going to see what else there is to fix.

I think pronouns are pretty broken.

Maybe I'll look at that.

That and verb tenses....

September 8, 2000

Broken:

if the speaker likes warm weather then the speaker does not like cold weather.

i like warm weather

(the program asks itself: "does the speaker *not* like warm weather" when evaluating the proposition.) It appears that 'not' is getting attached to 'weather' and is then being re-sourced from the context.
September 17, 2000
 I put VoiceXML Brainhat up on the web.

Tonight, I am going to Chicago to attend a show about Voice E-Commerce (show is Monday and Tuesday).

It is time to get a business plan together, and time to make some serious demos--actions like buying clothes or looking for a car dealer.

Broken forms:

"if the speaker wants clothing then ask if the speaker wants red clothing."

The problem here is that the attribute is not being considered as a REQUIREd argument, the way it should be.
 "If the speaker wants a clothing then ask if the speaker wants red clothing."

What happened to "red" in the proposition?

Brainhat selftalks "does the speaker want clothing" (to which the answer is yes).
 "If the speaker wants color clothing then ask if the speaker has money." In this case, the proposition is selected solely on the basis of the verb-subject-object.

The requirement for "color" was not considered.

September 18, 2000

Ugh.

I am at a show in Chicago dealing with speech and e-commerce. The show is okay, and Brainhat doesn't even seem that far off base.

The trouble is that I get dragged down at these shows...not sure why.

Wait: I guess I know.

Because nobody gives a shit about my project, and nobody has ever heard of it.

There were some great success stories, and some nicely finished products, though not in my space, particularly.

I'll get over it.

In any case, I need to figure out where Brainhat sits, and whether there is a real business case for it.
 I was working on recognizing things of the form: "if the speaker asks what color are the shoes then the speaker is an idiot." I modified runqs.c, cc-patterns, input-patterns and qcomp.c, but I didn't get it working.
September 26, 2000
 I am on a plane returning from London. I was thinking about the upcoming SpeechTek show and wondering what I might be able to accomplish in the busy month I have left.

It occured to me that I should do something like last year, except with a new theme and perhaps an update speech engine. I thought I might set up a little restaurant scenario: there will be a table with a place-setting in the booth. I will be the waiter. I will take the visitor's order, talking to brainhat all the while, introducing the customer's name, etc.
 A few things to do:
1) Look into a newer speech engine.

Actually, I have the millenium edition of the IBM engine.

Could I get better dictation performance from that?

If not, there is a new Dragon engine....

Should I choose a CFG?

That will break the "what is your name" part of the scneario.
2) Create a "menu" for the booth scenario.

It can have a list of foods for the demonstration, and also include a technical summary.

This can be the thing that people take away with them.

3) Produce a new techincal update showing Brainhat as a clearinghouse for NLP traffic; VoiceXML, SAPI, mail, etc.

October 20, 2000

Mike Redmond and I took a call today from Ascent-inc--two Indians in an apartment in Westchester, I imagine.

They were looking for a way to augment a more scripted VoiceXML conversation with Brainhat when the user gets confused (or something).

Now, I am thinking about finishing up changes before the New York show in a couple of weeks.

Today, I want to fix verb tenses.

I was happy.

the speaker were glad.

sheesh.

October 21, 2000

I want to make "the speaker" translate into "you" in output, and I want "brainhat" to translate into "i" on output.

It's a problem, because

October 27, 2000

I am fooling around with the speech variables that I profess to hate.

Again, the object is to manipulate them just enough to accomplish what I need to accomplish.

Someday, if the project ever becomes important, I'll revisit the variables and fix them.

The objective of my fooling around is to, as I said a week previous, to swap "brainhat" for "i" and "you" for "the speaker."

Next week I will be exhibiting at SpeechTek for a second time with little more to show.

Sigh.

All changes will take place in speak.c in the post subdirectory.

I figure that I will make a multi-level clone of the thing brainhat is supposed to say, and then run the routine dorepl against the clone to make the swaps.

The swaps only take place if speech_on is 0 and speech_level is 0.

Wish me luck.

November 10, 2000

The project above got a little bit complicated.

I am letting it rest for the moment.

On a plane to FLorida with Paula....

November 11, 2000

 Grieving over statments such as "i am going",

"i was going", "where are you going".

My sense is that I can accomodate this different use of 'tobe' based on the presence of the second verb.

The translations could be:

"i am go", "i was go" and "where are you go".

As long as these structures are recognized before the straight, "tobe's" I should be okay, I figure. I will pull the tense, number and person from the 'tobe' form and the subject and stick them onto the root.
 More specifically, I am worrying about this request from the fellow from Ford Motor Corp., after the speechtek show last week. What should one say to a car?
 we are going to tampa this afternoon. do we have enough gas? how long will it take? are there any traffic hazards i should know about? is it going to rain later? where were you this morning? we are stuck in traffic. can you tell my wife that i am going to be late? could you turn up the heat a little? roll up the windows. Maybe $c`action`x should be a sub-rule(?)

That way, I could include this new for of compound verb.

Later, I am working on the first statement:

"we are going to tampa"

I will make it work by accepting the statement as a form of "csubobj tobe action"

This will give me two verbs.

Then, I will pull the tense, number and person from the tobe verb into the root, and then delete the verb. I need a new post processing routines, and I need to order the assignment of verbs so that pulltense locates the tobe verb in lieu of the action verb. The new routine is:
RMTOBE: turn the tobe verb into an ignore link.
 Look into pulltense in the cases where there are two verbs.... can I always count on it pulling from the right verb, or should I be more deliberate?
November 17, 2000
 I am on my way to Malta.
 Having lots of things broken, and plenty of projects to do,

I thought I might pick something at random: deprecation. Consider the question "what do you have?" "Brainhat has the beans." "What else do you have?"... Now it is time to take the first response, "beans", and push it down the list of candidates. How do I do this? I could add a tag that makes "beans" just slightly less attractive what chooseone gets to the available statements: "brainhat has beans", "brainhat has hamburgers", etc. I'll know where to add the tag because "beans" will show up on the top of the list the second time I asked just as it did the first time.
 The mechanism can be that I start with a DEPRECATED tag (with a value of -empty-). Whenever a concept survives chooseone, any DEPRECATED tags within it will be converted to IGNORE tags. Likewise, if I find a IGNORE tag when I am planning to deprecate something, I can just change its type to DEPRECATED.
 After I do this, I am going to work on the one-word answers to questions, as in "what is your favorite color?" "red". And I need to be able to recognize other forms in propositions, such as the progressive verbs I was fooling with recently. And I need to make a hash for declarations. And I need to give brainhat a notion of time. And....
 The deprecation thing isn't good because it subtracts points. This can break other uses of the object, such as in yes/no questions where I want an affirmative score to top 1000 points. So, I need to add points to change focus. How do I do that? It is easy to choose the object I want to deprecate. Perhaps I should simply build a chain which is missing the winner? If I delete all winners, the answer can be -empty- (or "Brainhat does not know").

One last thing.

Wasn't I supposed to be culling pronouns from questions as well as statements?

It seems broken....

(later)

I am going to undo some of the changes I made for depreciation. I will leave the routine, depreciateobj, but I will eliminate the tag and the tag processing.

Instead, I will have the routine delete the leader from consideration. But, hmmmm.... let's say that there are three things to choose from: ball, block and a top.

How do i make a third choice?

(even later (I am in Malta!))

Instead of subtracting a few points if I find a DEPRECATED tag, how about if I add a few points every place where I don't?

November 19, 2000

Perhaps I am breaking one of my own rules.

By trying to depress certain concepts so that they don't score so well I am pushing the intelligence down to a lower level--to a score. Rather than deprecate numerically, I should have Brainhat get a list of concepts, look through the context to see what it has recently reverenced and be sure to pick something else--or even "Brainhat does not know."

That's the way you and I think it through; we list alternatives and discard the ones that haven't been satisfactory.
 I am removing references to deprecation in all of the backbone routines (including rels.c).

I will leave deprecateobj in place as is, to be changed later, probably.
November 21, 2000
 When brainhat is inputing an input file, it will update the discourse buffer.

But should it?

If it didn't I could use the buffer as the place where I go to check what "else" a person might be interested in.

As it is, the discourse buffer gets filled with everything that gets into the context buffer as a scenario is read in.

I added a new flag, called 'echo' to allow echo of input and output during the read-in of an initialization file. By default, ECHO is off. When it is off, nothing gets placed into the discourse buffer during initialization. When it is on, the output does become part of the buffer.
 This is important: questions of the form "what else do you have" will behave differently when echo is on because brainhat will not distinguish between input created by the speak and input from a file.
 Next step: modify (replace + rename) deprecateobj. I will instead have a routine that takes a conchain and compares each CC with the discourse buffer to see if it already exists on the discourse buffer (in some form).

If it does, it will be deleted from the list.

This routine should be applicable to many forms of "what else" questions.

The name of the routine will be ccdiscrm for "CC from discourse buffer remove."

(a little later.... still waiting in the Malta airport)

That worked pretty well.

November 22, 2000

Sitting in New York, JFK airport.

I added sentences of the form "I am going to the hospital" or

"I go in the river" as causes for propositions.

I haven't tried to add them as effects yet.

I ran into a problem: selftalk asks Brainhat "does brainhat go?" and brainhat doesn't understand the question. The adverbial prepositional phrase is also missing from the selftalk question.

This is another case where it takes a lot-a-lot-a work to get some basic sentence structures handled.

You know what else is missing?

Simple sentences like "i see."

How do I deal with this?

A simple question like "do I see" could apply to two different forms of declarative statements:

"do i see <something>?"

"do i see <into the outfield>?"

The only way to plow through it is to have one match ("do i see") get processed both ways.

November 24, 2000

Thanksgiving came and went.

I am starting to wonder whether my original plan to open up the code might not have been a reasonable one.

Some good documentation would be necessary.

The real issue may be that Brainhat is more than 10% difficult to use, which tends to scare people away.
 The question is: if I re-opened the source, would I be able to make a business of it?

More specifically,

I was wondering if perhaps I need to create some new routines for simplifying hashed storage and retrieval.

Every time I go to add a new simple-statement type to propositions, I end up fighting with the hash and stuff.

Some thought required...

(later)

I think I know what to do about the two forms of "do i see?":

I will have a post routine that evaluates the statement through declques with things holding the position of the OBJECT, and then samples the result. If it comes back as empty then I will re-run it through a routine that does a check for an adverbial phrase. The routine that does the adverb check has to interface to the post routines before and after it the same way that declques2 does. Note that there is no way to make the statement "i can see" (currently) without Brainhat appending "something" onto the end to make it read "I can see something."

December 3, 2000

I added the construct that matches the intended questions

"can i see (in the water)?"

While I'm thinking about it: should I add some test and branch capability into the post processing stack?

Interesting idea (to me).

December 4, 2000

Thinking more about branching:

I will add a few extra elements to the definitions.

They will be "brempty", meaning "branch on empty," and "target" signifying a label to branch to.

A sample use might look like:

define
something

label

sent

rule

$r`csubobj`0! $C`not-enablers`1! $c`desires`2! $r`csubobj-ana`4! $r`csubobj-stmt`3

map

SUBJECT,ENABLE,VERB,OBJECT,IGNORE

postp

CHOOSEONE

postp

GLUENOT

postp

DESIRETNS

postp

PARENABLE

target
MARKER1

postp

ENABLETNS

postp

VERBPAR

brempty
MARKER1

postp

PULLTENSE

postp

PUSHADVR

set

INPUT1

Another thing to add would be a command called "set" to set a flag as the processing proceeds.

By virtue of a "set" I can change debug variables.

These variables could be used to modify the way post routines act. A very good use would be to eliminate the dual sets of statements kept for propositions (simple statements) versus statements. The only difference between the two is that one tries to resolve attributes, things, etc. against the context, whereas the other (simple statements) does not.
 Post-processing routines are kept on an intlink chain. This does not differentiate between "opcodes" ("postp" versus "brempty", for example). Accordingly, I will need to create a replacement for intlinks that can store the "opcodes" of "post" statements, "branch" statements, "set" statements, and so on.
December 9, 2000
 I am going to enhance the capability to modify execution within a rule. The set, branch and post processing capabilities that I have now only take effect when the pattern matches. I need some more capability. Particularly, I need to be able to pre-process and post-process whether or not the match takes place. Part of the effort will include some relabelling.
 Commands that come before match will be preceded with pre. Examples might be preset, preunset, and perhaps preproc. After the evaluation, whether or not the match occurs, will be labelled with post.

Examples are postproc, postset, postunset. Processing that takes place when a match occurs will bear a match prefix.

Examples are matchset, matchunset and matchproc. Commands that are associated with branching and target declaration will be assumed to be part of match processing.
 This means that postp will be relabelled as matchproc. All processing of commands--prep, post or match--will be from the bottom up, as it is today.
December 18, 2000
 I connected Brainhat through a voice portal at a company called VoiceGenie.

They are running a contest for the most interesting applications for VoiceXML.

I thought I might enter Brainhat, though I am concerned that the language in the entry submission suggests that the company that is running the contest will take some ownership or control over Brainhat that might be inappropriate.
 I need a few options flags for Brainhat. The first will be an option to direct subsequent VoiceXML requests to a particular address. The purpose of the option will be to provide for the situation where a Brainhat VoiceXML server is behind a firewall, and the address that the server places into the URLs is incorrect (because the server inquires as to its own address and finds the intranslated form).

The flag will be "-x address".
The second and third flags are for an initial prompt and grammar. The default prompt will be "Brainhat says hello" and "hello | hi | how are you". Either/both will be overrideable. The flags will be "-g 'greeting'" and "-g grammar URL". If the URL is a simple path, then the server and path will be automatically prepended. The grammar will continue to be used for subsequent accesses.
(later)

I'm an idiot!

What good is a BNEMPTY operation if the conchain is ruined;

I can't further process a conchain that has been destroyed by upstream routines.

The only hope for this goofy idea is to make a routine that saves the contents of the original chain before processing starts.
January 1, 2001
 "I don't feel good, Dave"
 I did a lot of clean-up of the propostion evaluation and compilation code to try and reduce the effort to add new forms of CONDITIONS and CONSEQUENCES. So far, it looks better, but hasn't made life any simpler. Stopping now for a while, I need to make doask voice a question of the form:
 o Root

 /|\

 / | \

 SUBJ / | \ QUOTE

 / VERB \

 / | \

 o o o

 speaker says hello

That is: "does the speaker say hello?"

January 2, 2001

It is all becoming quote complicated.

I have added support for "does the speaker say hello",

"hello -> the speaker says hello (selftalk)" and

"if the speaker says hello...."

It's more complicated than that, of course.

It currently is more of "if the speaker says <greeting>"

January 9, 2001

"if i am not a man then i am a woman. I am not a man.", works. "if a person is not a man then a person is a woman. I am not a man.", does not.

January 26, 2001

I enetered Brainhat into a VoiceXML being put on by a portal called "VoiceGenie."

My entry is kind of lame, frankly, and I don't think it will compete very well with more scripted/traditional CRM applications. Brainhat is still young.
 Spending some time with Mike Redmond the other evening thinking about the future, it occured to me that the real prize is still interaction with the computer in a conversational way. The Brainhat "cube", for instance, could be a box that sits in the kitchen, is capable of advising on the weather and traffic, tells jokes, etc. This is where I want to go....
Problem:

If the input is

If the speaker asks how are you then ask how is the speaker.

If the speaker says hello then ask how is the speaker.

and I ask "how are you," I get nothing.

No tests are even run.

If I add "you are sad" to the input and then ask the question, I get output as expected. Hmmmm...
 To do: finally add the ability to take a single adjective as an answer to a pending question.

Brainhat says "how is the speaker." And the speaker says "fine."
 Also, I need to add a capability for Brainhat to introduce subjects if it has no questions to ask.
 I need Brainhat to understand "probably."
 I want to add temporality (big job).
 I need to be able to revoke things learned or deduced. I also need to be able to reference all deductions cascaded from things learned or deduced so that I can revoke them too.
 I need a robot demo that does something (x10).
 I need a CRM demo that isn't goofy, like the hotel clerk.
 We need the business plan and business structure.
 Need a narrative capability, both recognition and generation.
February 24, 2001
 I am flying to Florida for Cherie's wedding, then to the UK, and then to San Diego for a WebSense conference.
 Working on the first problem above; how to answer with a simple adjective....
February 27, 2001
 It is 3 am in a hotel room in the UK. Since I have to adjust to an 8 hour time zone change, I thought I'd start while I am still in the UK.

I have added logic to checkcommand to differentiate between a yes/no 'tobe' question and a question about an attribute (which is really a thing with a REQUIRES tag tacked onto it). Now I need to create an input pattern and a routine to match a sole attribute uttered by the speaker and apply it to the saved 'thing.' This will be then selftalked to Brainhat so that Brainhat can apply the answer (perhaps "fine", "red", or "in the water").
 One other thing: I am doing this development under windows. The reason? I have an MP3 player under windows.
March 15, 2001
 I am working on an internals document because I realize that some of the workings of Brainhat are becoming foreign even to me.

I am in a section describing hash tables.

It occurs to me that the way I use the hash is just too laborious still. Particularly, the effort I spend matching patterns just so that I can create an index seems like a waste. Why not create a routine that traverses a CC, finds the salient bits (none, verb, preposition phrase, etc.) and creates an index out of whatever is available.

If the creation and retrieval index generation process is the same, then

I will be able to depend on automatic hash index selection without worrying about the CC I start with.

This will make it easier for me to continue developing the use of associative hashing for the context.

March 19, 2001

I have implemented autohashing, and it seems to be working pretty well.

The one area of difficulty (so far) is in question propositions. Take "if the speaker asks how is brainhat then ask how is the speaker." The autohash function selects four tags: speaker, brainhat, to-ask, and to-be. Anyway, these tags are not visible when the question is asked; "how are you" autohashes to only two CCs: to-be and brainhat. Accordingly, the hash never matches.
 A couple of kludges come to mind. I could pull the quoted portion of the proposition-about-questions out and use that by itself. However, when the speaker asks "how are you," a real fact is created: "the speaker asks how is brainhat."

Perhaps this should become part of the context--that the speaker asked.

Then I could say "does the speaker ask something?"

Needs thought, though I think I'd rather include the extra information rather than re-hobble the program so that propositions for questions work as they used to.

To do:

1) See that the speaker asking "how are you" gets stored as "the speaker asks how are you."
2) Also see that the question "how are you" gets answered (as it does, currently).
3) Review runqs to see if there's a further need for it.
 I will modify addtoqs to add "the speaker asks...." to the question; the question itself will become a quote. I need to be able to answer questions of the sort: "does the speaker ask how is brainhat?" or "does the speaker ask if the ball is red?" Routine addtoqs and runqs may have no further utility when I am done.

March 24, 2001

Had an interseting discussion with a fellow from a company named Voxeo. They're an ambitious voice portal, looking ahead a little bit. I need to modify a thing or two so that the VoiceXML Brainhat works with their stuff.
 Should addtocontext add QUOTEd CC's?

The problem is that the following sequence tells

Brainhat that Brainhat is happy.

are you happy?

does the speaker ask if you are happy?

are you happy?

I removed 'QUOTE' from CONTEXT_SET[] and CNTXTSUB_SET[] in common.h. (Didn't help).

March 25, 2001

Peggy Dowd died last night.

I have been working on making Brainhat concious of the fact that it hears things from the speaker and others. So, for instance, if I say how are you, Brainhat will record the fact that "the speaker asks how is Brainhat." The net result is that I will be able to react to the fact that people say things, not just to what they say. This will make the scenarios more complicated, but much richer in the end; I could have Brainhat lie!
Recounting: the motivation for heading down this road is that I wanted make autohashing work.

This would improve the way propositions are handled today, and it would make hashing the context easier. Essentially, hashing will allow me to have associative access to the context buffer in addition to serial access.
 Auto-hashing appears to work okay, however it became apparent that there was going to be a problem auto-hashing propositions like "if speaker says <something>" against a context buffer that only contained the "<something>" part.

In one case, "speaker" and "says" are significant in the hash; in the other, they're missing. In the past, I kludged; because I was crafting the hashes by hand, I could include/exclude the pieces as a desired.
 Anyway, on the way to getting auto-hashing working I broke propositions concerning the speaker saying or asking something. I decided that the way to handle it was to expose the fact that the speaker says or asks something to the context.

Now, if I say "are you happy?", the context gets a new fact:
 o Root

 / | \

 SUBJECT / | \

 / | \

 o VERB \

 speaker | \ QUOTE

 o \

 asks \

 \

 o Root

 / | \

 / | \

 SUBJECT | \ ATTRIBUTE

 / VERB \

 / | \

 o | o happy

 brainhat o

 tobe

If I am looking for the answer to "does the speaker ask if you are happy?", I should be able to find it spelled out.
 The next problem is that I have to handle multi-level CC pattern matches.

I've had to do this plenty of other places, but I am feeling adventuresome now, so I thought I might fix it. Here, the issue is "does the speaker say <QUOTE>?" or "does the speaker ask <QUOTE>?"

To really answer, I need to match the quoted portion in addition to the "speaker asks" part. I am loathe to do it by running through a litany of possible patterns (declarative, titular assignment, etc.). What I need is a general purpose way to say "does this pattern match that pattern?" Or perhaps, I need a routine that runs the litany for me. One thing to keep in mind: any routine that tries to compare CCs to see if they match (more precisely, to see if one is a parent for the other) needn't deal with impossible configurations of concepts.
 Perhaps I should just consider this as an extension to \fRvrfy_child\fR. Just as vrfy_achild extends parent/child testing to prepositional phrases, whatever this now routine is could extend it to (nearly) aribitrary CCs. Maybe I should simply extend vrfy_achild.
March 31, 2001
 I have made some modifications to main.c, def.h and

Makfefile on the web server.

Don't want to forget to grab these changes back.

I updated the demo on the voxeo web site to include include the statue demo.

It is okay.

My only complaint about that demo is that it doesn't particularly learn anything about the user.

Anyway, I spent some time thinking about the more general comparison routine that I want to help me evaluate the stuff inside the "quote" portion of a CC. Here's the core of the algorithm I came up with. There needs to be some fluff on the outside that soaks up the top-level of the comparisons.
 Here is the algorithm:
 given two CCs, parent and child....
 o Parent o Child

 / \ /|\ candidate

 / \ / | \

 / \ / | \

o A o o X o o

 / \

Step through the links.

0) Select a node A from the parent. Is node A a root node? If so, select a root node from X of the same link type and call this routine recursively.
1) Hi.

2) Select a non-root node X from the child of the same link type as connects A to its parent.
3) is X a child of A? If so, then break out of loop to step 0.
4) is X orthogonal to A? If so, then the whole test fails, break out of outer loop.
5) If we reach here, then there is a concept A in the parent which does not have a corresponding concept B in the parent. Accordingly, the test for lineage fails.

Before we start, we have to deal with the top-level concepts:
0) If one is a root and the other is not, then fail.

1) If both child and parent start with root nodes, begin processing as above.
2) Check to see if "child" is a child of parent. If so, continue processing. Otherwise, fail the match.
Bug: "You like a woman. Do you like the princess?" "Maybe. Brainhat does not know...." (sheesh).
April 7, 2001
 "Does caller asks the ball is red?"

Self-talk is hearing this.

It should be "Does the caller ask if the ball is red?"

On another note, the general purpose CC comparison works!

And so does autohashing!

Now, I need to sprinkle the improved capability about.

I am on my way to San Francisco later today for an RSA show and a meeting with a customer on Monday.

All I am thinking about these days is making a go of it with Brainhat though...

The autohashing and non-specific pattern matching I added to Brainhat are working beautifully. Next, I need to make simple-statement propositions work for things the speaker says. For example, I want "if the caller says that the princess is pretty then the caller is happy" to work as expected. I can say "if the call asks if the princess is pretty...." and that will behave.
 Plane is preparing to land in St. Louis on the way to San Francisco, so I will be saying goodbye for the time being.
 The hashing is a little bit out of control. Lots of brokeness to deal with. Also, I have been playing with spkrsays to attach the last thing that the speaker says as a quote to a CC that says, surprisingly enough, "speaker says." Needs help; too chatty.
April 10, 2001
 I have been in San Francisco for a couple of days now with Steve Brown. The Articon-Integralis share price just dipped below 30 for the first time.

I have been thinking about making a break; this is probably a good time.

Anyway, back to Brainhat:

I am going to curtail the activity of autohashing a little bit. It is pulling up too many tags, which makes the program go a little bit slower. Also, I am going to consider whether I really need "speaker says" for statements, or whether I might be just as well off paying attention to questions alone.

Working through this autohash stuff I have found that one of the very things I set out to fix is broken. If I say "if the speaker asks how are you then ask how is the speaker" generates a hash that is retrieved correctly when the time comes to say "how are you?" to brainhat. Then brainhat self-talks "did caller asks brainhat?", which ends in a maybe.

The appropriate question is "did caller ask how are you?"

This gets answered with a "yes."

The way the question is phrased still presents some problems. If I say "did caller ask how is brainhat?", I get a "maybe." This goes back to an issue with identifying "I" and "speaker" and "you" and "brainhat", I believe.
 Another construct that should work is "did caller ask brainhat how is brainhat?"

This is a little tricky because I am going to get a different CC for "did caller ask brainhat <something>...." than for "did caller ask <something>."

I'm not sure what to do about that.

April 11, 2001

I am on the plane returning from San Francisco. Looking at the problem of hashing gone wild, I noticed that one issue is that the routine sometimes tries to hash stuff that is not in a normal form.

If I say "ball", for instance the hash sees "speaker says ball".
 o Root

 / | \

 / | \

 SUBJ | QUOTE

 / VERB \

 speaker o | o ball

 o

 tosay

Auto-hashing grabs all of the attributes inside of ball and makes them part of the hash.

I guess I need to keep track of the level when I am auto-hashing. Or perhaps I should only follow QUOTEs if they are Roots. Let me try that. Working so far...
 Grieving over the problem of "does speaker ask how are you" and "does speaker ask brainhat how are you". The right fix is to make brainhat (or mario, or a robot) be the object in the sentence. The problem is that it is creating yet more hash tags! Anyway, I created a rule in input-patterns and I added a line to addtoqs to add brainhat as a an object, but I commented both out because I am not man enough to think about how to tame the number of auto-generated hash tags yet. The limit is ten, by the way. This is because that's all the arguments that I made space for in the routine proposition2. I could make more room, but I am already trying to beat the tags back with a broom.
 Later, stuck in St. Louis' airport. I added some constructs so that the program could self-talk questions about questions and recognize some questions when turned around. For instance, the program will understand "does the speaker ask how are you?" as well ask "does the speaker ask how you are?"
Bug: I turned on debug/tests and noticed that when I read in a scenario that propositions get exercised.

I think this is probably a product of the auto-hashing; in fact I think I might have mentioned it a few days ago.

Anyway, I don't want to be exercising propositions when I am reading in a scenario.
 Asking "why" after brainhat generates an observation of the sort "speaker asks..." gives me a problem because the "why" tries to answer "why does the speaker ask...." Harumph. Fixable. Got to get rid of "really? huh..." as well.
 On the ground in Windsor Locks, hurtling south in a cab... I was doing some grieving over what I would really do if I was to try and run a Brainhat-based business. What product would I have? Is it reasonable to imagine that others would want to take a chance integrating my junk if I wouldn't?

And if I did try to integrate it, what would I do?

One of the answers that came to me is that I should probably make a robust VoiceXML server.

It could be a soup to nuts server with database connections.

As something closer in,

I guess it could be as server where you bail for help from a voicexml application, and return once the help has been given.

April 15, 2001

I broke "if thing1 is near thing2 then thing2 is near thing1." During evaluation, the program asks "is thing2 near thing1?" Maybe. Bugh.
 I broke: "you are good. how are you?" The program says "how is good brainhat."

Bugh!

(A little later)

The problem is that I added a new routine to dospeak.

The idea is that it would be able to voice, say, "how is brainhat" as part of, say, "the speaker asks how is brainhat." Unfortunately, the CC for

"how is (good) brainhat" looks just like "brainhat is good."

I need to think about how to differentiate them.

I guess I could tell them apart by having pullattrs2 leave a turd of some sort in the root. If I put a copy of the attribute that is supposed to satisfy the REQUIRES tag, would this screw things up elsewhere?
April 25, 2001

I have encountered a problem where autohashing may store tags in an order that is different than the order they are encountered during use. The result is that concepts get incorrrectly substituted into the proposition for evaluation.

Thinking about how I might solve the problem, one idea that occurs to me is that I could sort the tags.

Have to think about it a little...

April 26, 2001

Hi.

April 29, 2001

I am in Cancun with Rick on a trip that UUNet bought for us.
 I occurs to me that at the time I determine I have a hash match, I can also pair the matched concepts with their tags. Currently:
 autohash returns a conchain of "interesting" concepts taken from a CC found in the context or whatever.
 This chain gets passed to proposition2. The routine takes the "interesting" concepts and generations a list of parent concepts for each.

The lists are hashed in NxMx... (however may sets of parents there are) permutations.

Whenever one of these permuautions generates a hit or hits in the cache, the corresponding cache entrie(s) are pulled and checked for concept tag matches (verify_hash_tags2). This eliminates the potential case where a cache hit is the result of the chance combination of a set of concepts that cause a cache hit, but otherwise bear no commonality to the CC stored at that location.

Hash data are stored in a "bucket" consisting of the proposition CC, match tags (stags) corresponding to the tags that enabled the cache match and a second set of tags that are used for substitution into the stored proposition. (To understand why there are two sets of tags, see the discussion about routine parent).
 When tags are verified, the proposition CC is multi-level cloned from hash location and passed to evalprop2, along with the tags for those concepts that should be replaced in the clone and the actual CCs to be substituted.

evalprop2 goes on to substitute into the proposition and evaluate (selftalk) each of the CONDITIONs.

If they all evaluate to "yes", then each of the CONSEQUENCEs (also having had substitutions made already) is selftalked into the context.
 Now the difficulty: The steps in the paragraph before last assume that the "actual CCs to be substituted" (which is the chain generated by autohash) will appear in the same order as the tags and stags found in the bucket. If they don't, then we get some pretty goofy substitutions; verbs can be substituted into attribute slots, and so on. The trick is going to be to match the order of the concepts returned by autohash with the tags in the bucket.v
 The fix will probably be to patch up the order of the concepts returned by autohash in a routine called just following verify_hash_tags2. One problem will remain, however. In propositions like "if thing1 is near thing2...." there will be no way to tell which of the concepts is corresponds to which of the two template "things."

Unless I come up with a new way of indexing, I may have a problem that is most easily solved by doing things the old way for certain types of propositions--that is, by making the order be explicit.

I guess that wouldn't be so bad; I have all of the old routines intact.
 (About an hour later...) I figured out that all I needed to do was pull tags from the chain passed in and hand those to evalprop2. They are already in the right order.... The observations/comments about handling xparent-based propositions still hold. In fact, propositions using xparents just plain fail when i use tags from the CC that created the hash match; the CC knows nothing about xparent tags.
 (much later) It occurs to me that I might be (ooo! I have guitar calouses!) much better hashing, retrieving and substituting while preserving parts of speech. I could then match up xparent tags to the tags from the CC that caused the hash match. The cost is that I might lose the serendipitous odd observation (that never happens...) when the hash works, but the POS data are absent.
May 1, 2001
 More thought: what I am going to do is sort the data on POS "#define" number. This way, the original hash and any subsequent statements that recall the hash will put things in the same order (I think). What happens with compound propositions? Does the order of the bits in the second portion of the proposition match the order in the first part?
 One other thing: I am going to make autohashing go a maximum of three levels deep. The things that I hash at each level will differ. This will control the wild number of hash tags I have been generating with autohashing. Also, it will reallow me to use "speaker says..." statements so that I can interpret idioms and stuff.
May 13, 2001
 Sunday, I am on the way to the UK. After creating the sort routine that I mentioned above, plus a lot of hair pulling, I realized that I had made pcomp store the consequences and conditions of the propositions into the same hash. I might not have ever known--the two conceivably live out of the same collection of buckets--except that along with the autohash code I added, I created an artificial restriction on the number of propositions that can be exercised in a match situation: just one. I need to make autohash return a chain of chains or something so that I can generate multiple consequences from multiple propositions.
May 15, 2001
 Argh.

Everything is fucking broken.

What a mess.

"if thing1 is near thing2 then thing2 is near thing1"

"if a man is near the princess then a man is happy"

"the princess is near luigi"

So, why is the princess happy?

Sheesh.

May 19, 2001

Fixed all that.

I tried to hop a plane to Paris yesterday, but I got lost along the way to JFK. Drove across the George Washington Bridge to New Jersey, up the Palisades Parkway and then to West Hartford. Slept at Darryl's.

Nice day today, Saturday.

I have been in the office working out Brainhat bugs because

I have no place else to go.

There's something to be said for a very *long* telnet window. It makes debug much easier. I wish Paula hadn't poked me in the left eye, though. Still can't see like I used to... makes small fonts fuzzy on the left side. Or is it old age?
June 2, 2001
 Start the program, type 'what is thing?', program crashes.
 I am looking at office space and a PR firm for Brainhat. Getting seriouser.
June 13, 2001
 Have been in Phoenix for the last few days at a UUNET/Worldcom shindig. Darryl came too. Fun. Over. Bugh. Now I'm sitting in the airport waiting for the first leg of the flight home.
 Need to look at test28: "mario is the red block. luigi is the blue block." The problem is that mario becomes luigi. The reason is that (I think) the red block gets fetched from the context as a candidate for the blue block... Hmmm.... if that's all it is, then it shouldn't be too hard to fix.
 Here's what happens: qacands pulls mario from the context while it is looking for a block.

It isn't checking to see that the block it has pulled is blue (matches the requirements/attributes of the candidate). It isn't checking to see if the block it pulls might be orthogonal to the candidate. The answer is going to be that qacands is going to have to use a better matching routine for comparing candidates against the context. Perhaps I can use the g.p. pattern matching routines I pulled together a month or so ago?
 ball person

 o o

 / \ /

 ATTR / \ / CHILD

 / o

 o mario

 red

This is the state of things just after mario becomes a red ball. Next, we have a title assignment for Luigi--a blue ball.
 o ball

 / \

ATTR / \ CHILD

 / \

 o o Luigi

 blue

qacands finds a replacement for "ball" in the context--something more specific--"mario."

The replacement occurs.

There is no processing to check to see that the parents of the replacement might be orthogonal to the original candidate. I think I check to make sure that the replacement isn't orthogonal at least (need to check).
 Looking through the junkyard, it appears that check_orth_things implements this functionality.

Need to take a closer look.

I think I could glue it into qacands.

Another question occurs to me:

what would happen if I said that "mario is a red ball," followed by "luigi is a toy"? I'd bet the same titular equivalence will take place. But there are other implications as well. When I say "Luigi is a toy", I may have no intention of saying that he is a ball.

He could be a block.

(Just checked this; there is no problem with Mario becoming Luigi). Guess I don't remember why I might have expected this to work. Need to spend more time with this crappy program.
 Similar topic: "i see the red ball." "the toy is in the water." Should this say "the red ball is in the water"? The clue could be the definite article.....
July 16, 2001
 I am working on fixing check_orth_things so that the case above no longer fails. An interesting questions posed itself in my head: "can something be orthognal on a concept of which it is not a

child?"

For instand, could the color red be orthogonal on mood?

The easy answer is "no," that doesn't make any sense. Thinking about it, though, I can imagine situations where I might want to be able to have orthogonality outside of lineage.

For instance, an automobile is not a building.

However, automobile could be orthogonal to, say "restaurant", based on location.

(Think about the exchabge: "mario is in the automobile. is he in the building?") So... I might wish to have restaurant and automobile orthogonal as "places." (Hmmmm.... would it be enough to depend on them being orthogonal as things?) Anyway, I am going to allow orthogonality outside of lineage for the time-being, and them think about whether it really is a good idea.

Changes to check_orth_things and qacands did the trick.

I notice that test27, test30 and test35 look broken.

Ugh.

July 18, 2001

Did a radio interview this morning...

The next project is to add hashing to the context.

From there, I can implement temporality, etc.

July 23, 2001

Did another one this morning... WALE

In the restaurant scenario, the question "what do you have" is answered without regard for what we are discussing.

I should be able to say to Brainhat "we are talking about beverages" so that "what do you have" can be answered in context.

Need to think about a general way of fulfilling "what", "when" and "where" questions in a way that is sensitive to context.
August 1, 2001
 Thinking about making changes to declques2 and addrques so that they use the context hash....

August 5, 2001

Hashed declques2 works for explicit matches.

Say, for instance, I say "I see the ball," followed by

"do I see the ball?"

That works.

When I change the question to "what do i see?" (really,

"do i see thing?"), the question fails.

The problem is that the hashing is a match without regard for lineage; "ball" is a child of "thing," but that makes no difference.

The hash works out differently.

declques2 worked okay when I walked sequentially through the context because the test of the contents of the context are made using vrfy_child starting from the point of view of the things in the context.

In other words, I would check if "I see ball" was a child of "I see thing" (which it would be).

Solutions:

1) give up on hashed access to the context.

2) find some kind of multidimensional hash.

3) Use a combination of hashed and sequential pattern match for finding concepts within the context. This would give the program a short-term memory when presented with general questions, and a long term memory when presented with specific questions.

What might an n-dimensional hash look like?

I suppose I could take each concept within a lineage and assign it a vector.

The components of the vector could be orthogonal to the vector under test if there is no lineage, but non-orthogonal otherwise.

Vector sets could be trained; it would be a neural network application--recognizing the lineage within the ontology.

This requires some deep thought.

In the meantime, I think I'll punt and go for solution #3.

If the hashed lookup fails to answer the question, then I'll fall back on the sequential search of the context up to a maximum depth of N.

August 6, 2001

Thinking about making Brainhat refer to itself as "I" and to the speaker as "you."

Some groundwork:

the program is already smart enough to cull the verb person from the noun. So, if I say "i are happy" or "you am sad" it will understand me correctly.

I am thinking that I will provide an additional label--the last label--to each of the players, brainhat and the speaker, such that the persons can be reversed. E.g,
define
brainhat-1

 label brainhat

 label you

 label I

define speaker-1

 label speaker

 label i

 label You

The last label in each case--"you" and "I"--could be added by me, after the program starts up. I can use the upper case, which wouldn't normally survive the input process, to create new identities for the labels. Next, I can reverse the cases so that speaker-1 is the second person and brainhat-1 is the first.

From there on in, the program will (in theory) hear everything from its own perspective.

If I say "you are stupid," it will hear

"I am stupid."

Likewise, "I am happy" should be stored as "You are happy" (note upper case).

Will there be consistency problems?

Maybe.

I'm going to give this a spin.

August 7, 2001

So far, so good.

The only issue has been getting Brainhat to intelligently voice stuff with the new pronouns.

Some day, the utterance generation part of the program is going to need a real grammar, just like th einput portion has.

Have to fix the use of "my."

I typed "okay" when no questions had been asked.

The result was a core dump.

August 10, 2001

Made a contract on the house at 30 Terrace yesterday.

Watching Paula play with Brainhat, I decided that the next thing to do will be to add 'probably' to the list of things that brainhat handles.

if X then Y probably Z.

Recognition of probable consequences will get placed into the context along with everything else.

The fun starts when Brainhat runs out of things to talk about.

At that point, I can search back into the context looking for a 'probable' to turn into a question.

Naturally, 'probables' that can be answered without deferring to the speaker won't be voiced as questions.
 Next thought: should I use probables to support inferences? Likewise, I should think about propositions (using the correct sense of the word) for disambiguation. I'll think about an example later....
 For 'probably':
 Need to add 'probably | likely | might' as an adverb.
 Need to add input patterns to support adverb preceding the verb.
 Need to add hooks to the existing 'ponder' routines s.t. if no ponder observations or questions are generated, probable processing will take place.
 Probable processing will creep backward through the context looking for 'probables' that aren't definitively addressed by other facts from the context. If we find one, we'll ask the question.
August 11, 2001
 Got a note from someone about trademark infringement yesterday.

I guess the PR firm is doing its job....

The project to make "probably" work is going okay, though I have made several significant changes in approach. For one, I am not depending on an adverb to tell me that the subject "might" do something.

It really is the future-imperfect tense that I want to work with, and that is serving me pretty well.

For sake of consistency with my comments and the way I use the new code, I am going to change the name of the new ponder routine to be might.

I noticed a little problem when I was playing with inferences like "if you are sad then you might want a martini." The problem is that 'you are sad' gets tucked into the context with the verb intact and un promoted. For any other verbs, I promote to the parent infinitive form. I don't remember if I didn't do it with tobe for a reason, or if it simply didn't matter and that's how things ended up. Anyway, I need to experiment with promoting the verb "tobe" to its parent when things get stored to the context.

I also need to add to the grammar a tad to provide for other ways of say "X might Y"
 (15 minutes later) I did my experiment with promoting "tobe" to the infinitive in the context.

So far, so good.

Only found a few glitches yet.

Need to look into "did" being interpreted as "might."

August 12, 2001

I need to see if askcc is causing stuff to be tucked into the context, discourse, etc.

Lots of extra fluff being created in the context.

It is kind of a mess.

hi

 you said hello. Do you like me? hello.

yes

 you like me.

do you like me?

 yes. i love you.

why?

 i love you.

i am hot.

 you are hot. do you love me?

yes

 segmentation violation.

Looking around, somehow I end up with lots of copies of the speaker, which is making the program very slow and memory hungry. Worse yet, one of the copies has a (null) label and other bogus contents, which causes the crash above.

Have to take some time out to dissect this problem(s).

The offending english is:

"Brainhat loves the speaker. Brainhat wants the speaker to love Brainhat." I'm looking into the problem now.
 Debugging in anaphors2...
 Fixed anaphors2. Another mystery:
 "I like you" "Why"
 This causes turds to be created. When you do a "debug> list speaker" you can see them.
August 19, 2001
 I made some changes.

I think I fixed the problems above.

But some of the changes went into getconbyname and addtocontext, so I am a little nervous about what the repercussions might be.
August 20, 2001
 Need to make it so that selftalkchain does not exit when it finds some language that is incomprehensible. This will make a big difference for the voicexml server. Also, there's a problem with giving Brainhat an attribute at the wrong time; causes a core dump.
August 21, 2001
 As for the desire for a VoiceXML server....
 I imagine one could have a collection of prepared VXML dialogs and a Brainhat server.

The server could "get" the results of each dialog and, based on some criteria programmed in English, serve a next page that is either dynamic, static or customized (static content with dynamic modifications).

 documents...

 ----- ----- ----- ----- -----

 | | | | | | | | | |

 | 1 | | 2 | | 3 | | 4 | | 5 |

 | | | | | | | | | |

 ----- ----- ----- ----- -----

 VoiceXML HTTP "get"

 |

 |

 | dynamic content

 | ^

 V /

 --------- /

 | | /

 | | - - - - - > static content

 | server | \

 | | \

 | | \

 --------- > customized content

August 25, 2001

I am reenabling utter_imptv1, one of Scott Werndorfer's routines.

If everything breaks, redisable.

Need to look at having a pattern match in find.c that accomodates wildcard matches that include a period. I currently match IP addresses with a $W` `n pattern. I just used that with the page serving code as well. The problem is that if I say "kevin's address is 203.3.343.3.", the last '.' becomes part of the address. I suppose I could hack the $W pattern so it doesn't match the trailing period in a string *ever*.
 Tired. Goodnight.
August 28, 2001
 I created an intelligent VoiceXML server capability. I need to cobble together a demo to see if it works. Basically it's this: The verb to-serve causes Brainhat to look in its working directory for a web page to serve out in response to an ext-action such as 'serve foo.xml.'

As described above, this forms the basis for intelligent dispatch of VoiceXML pages.

Imagine something like: "if the caller wants a sweater then serve sweater.xml." It could also be used as an intelligent web page server. Hey.... that's an important observation...
September 4, 2001
 I am modifying the HTTP code so that it differentiates between XML pages and HTML "get" requests by the extension in the request.

I need this so that I can know whether to generate dynamic VoiceXML or HTML.

Another thought:

I should look for HTML headers and footers so that

I can serve up a complete page with all the graphics, no?

(later)

The html version should perhaps use coookies sometime in the future...
September 13, 2001
 Horrible, horrible crime took place on Tuesday; terrorists flew hijacked airplanes into the world trade center towers, pentagon and (abortedly) into the woods of Pennsylvania.

It was bad.

how do you feel?

lucy likes large spiders but she hates small spiders.

maybe what?

whats up?

there is a spider.

if the sun shines it doesn't rain.

i'm not famished just hungry.

what time is it?

how do you work?

you are bad because you like to eat my food.

small things are not pretty. are you pretty? are you small? it is warm. what is warm? what's your age? what's her name? any fish dishes? is that good? i am cold and sad. what color are the speakers shoes? the weather is very nice. i'm the only one here it seems. what did you do? i am 10 years old. i hear because i am happy. if i look at a thing then i see a thing. i hear well. i feel good.
September 17, 2001
 We spent the first night in the new (very old) beach house.
 I am grieving over some of the basics that I will need to be able to address or at least give lip service to before being able to make a strong argument that we are not going to be eclipsed by other projects under way.

For instance, I need to be able to extend Brainhat so that it correctly applies an assertion like "people need love."

(Is this modus {ponens,tolens}?).

This looks to be a simple expansion to "if a thing is a person then a thing needs love."

The other one (sort of covered already, I believe) is "people are stupid."

Or, if a thing is a people then a thing is stupid.

There are others. I need to say that I gave them a sniff.

The other thing I need to talk about is distinction of adverbial versus adjective prepositional phrases in ambiguous sentences. This one, for instance: "I saw the boy with the telescope."

The "with the telescope" part is either an attribute for "boy" or an adverb for "saw."

Brainhat can be made to ask questions:

"is the boy with a telescope?"

"do i see with a telescope?"

Anyway, I need to think about what the questions should be.

At the same time, I need to prepare for some offline data storage; lots of facts could be a burden.

September 18, 2001

More questions, possibly:

I see the boy with the telescope.

* Am I with the telescope?

* Is the boy with the telescope?

- If i have a thing then i may be with a thing.

She has a padlock on her chest.

* Is she on her chest?

* Is a padlock on her chest?

- chests often have padlocks.

He has hair on his chest.

* Is he on his chest?

* Is hair on his chest?

- if a person is a man then a person often has hair on the person's chest.

I saw the boy in the water.

* Am I in the water?

* Is the boy in the water?

September 20, 2001

I have been grieving over how to pass control between groups of mproc routines in situations where one utterance may be interpreted different ways, as just discussed above. There are two scenarios to think about: a) cases where one wants to test to see if the result of a group of mproc routine calculations has yielded a particular kind of output, ans b) cases where one wants to contatenate the products of several types of analyses for eventual evaluation, especially like in the case above.
 For case "a", I could possibly provide a new type of directive that does a cc pattern match to see if the mid-term result of mprocs is going okay. On the other hand, I might just create a couple more mproc routines with the hope that there'll be time to clean it all up later on.

For "b", I could add a couple more mproc primitives to save and conjoin intermediate results. This will allow me to consider potential adverbial and adjective interpretations of prepositional phrases as discussed above.

September 23, 2001

"I see poorly."

"How do you see?"

This question gets answered okay.

However, looking at a trace, it appears that processing extends past the matching pattern, question-how-6.

Why?

CHECK THIS.

On another note:

often, simple adjectives are used where adverbs would be more appropriate. Consider "the food tastes bad," followed by "how is the food?" The correct answer is "the food tastes bad," or simply "bad."

Other examples are "she seems happy."

"How is she?"

"she seems happy."

To get to "she is happy" will require an inference, if I want to stay on the straight and narrow. Perhaps, "if a person seems happy then a person is happy."
 But what if there is no inference, but there is non-tobe observation in the context?

What if the subject has attributes?

What should I ignore?

If "she seems happy" or "the food tastes good", should these be my observations? How is she? How is the food? Is the food good? Maybe. The food tastes good.
 The other component is that I need to add processing for the statements that use adjectives as adverbs... "the ball looks yellow." How do I represent that? "the ball looks that the ball is yellow" (?).
September 23, 2001
 I'm a little off track, I think. The questions, to get back on track, is what to do with questions like "how does the ball seem?" The verb is one that suggests appearance is the crux of the question. I guess that I should first look for a statement of the sort "the ball seems X", where X is an attribute. Failing that, I should look for "the ball *appears* X", where *appears* is a verb that indicates countenance in some fashion. And failing that, I should look for an attribute of the ball. E.g., "the ball is red."

Bugh.

On the other side of the question, something like

"how is the ball?" should be answered with "the ball seems okay" if such an observation is available. This would be superior to, say, "the ball is red."

Another subject:

What can I do with "I saw the wood?"

If I try to guess the verb, I am going to tend toward woodcutting over vision.

I need to know that "to saw wood a person has to have a saw." Likewise, "to see wood a person has to have an eye." chooseone will need some help.
October 3, 2001
 I just got to a point where I need a new routine in question-how-7.

The routine would search the context looking for a CC that matches the input pattern. That's a simple thing, and I have toyed with this before: should I have a match processing primitive that searches the context and places whatever it finds on the context chain as is pass upward? Might I also have sendmail-like pattern substitution rules? How many match-processing routines could I save?

 context
pattern-name

The command could be context, and the pattern to be matched could be pattern-name.

Or, it might read something like:

 context $l`SUBJECT|OBJECT{&l^CHILD{&c^things^2}^0}`1

And how might it look if there was a result pattern?

I almost put a guess down here, but the problem is that to do it justice, one would have to scope out a whole new pattern substitution language.

Still.... this might be something enroute to output generation; I could do away with the junk I have now.

For the meantime, what about a simple pattern match (the first suggestion)?

Do I have sufficient call for such a capability?

I'll need to look through the mproc routines.

A quick look tells me that most of the mproc routines do more than one could tackle with a simple command language.

In fact, C is almost as simple as any command language might be. But, there is a flowering need for a simple pattern match capability because I am starting to use the branch capability in the mproc lists.

The only way to do a branch-on-empty, for instance, is to have a routine that tests the pattern it has been handed to see if it matches a template.

Routine iscsffct does that.

 ptest
pattern-name

But for now, a crappy new routine....

Left off on question-how-7.

October 3, 2001

I rushed off to make sentences of the sort

"mario seems happy" work.

The normalized structure I chose looks like this:

 o Root

 /|\

 / | \

 VERB / | \ ATTRIBUTE

 / | \

 o | o

 to-seem | happy

 | SUBJ

 |

 o mario

Question is, do I want this as a new normal form?

Perhaps I'd be better off with the equivalent of

"mario seems that mario is happy."

Continuing with plans from yesterday, I decided not to make a broader test for "how does mario *appear*," because the first question might be "how does Mario smell" to which I won't want to answer "mario looks good." I will instead depend on the lineage of verbs back to seems/appears.

Hmmm... more thought.

I might not want to anticipate what the user would want the response to be if they ask "how is mario." Rather, I could say "if the user asks how a thing is and a thing is not described then tell the user how a thing appears."
October 4, 2001
 So many people ask brainhat "what time is it." I am going to write a little mproc routine that replaces the OBJECT in the answer with a time.

The answer to "what is the time" or "what time is it" will be simple.

It gets more complicated when someone asks "what time was it?" or "what time will it be when...."

In those cases, I need to look for an adverb, I think.

Imagine the sentence being: "at 12:30 I went to the movies..." How did you go? Well, I went at 12:30. Hmmmm....
October 5, 2001
 Thinking more clearly, but perhaps making the wrong decision, I believe that time should be treated as a thing. Even the example above shows a prepositional adverb, in which time plays the part of object of preposition.
 As for the treatment of the noun time, I guess I could make a special object that appears to be pulled from the basic knowledge pool like other objects, but returns the current time instead.

What should the format be?

Naturally, I will have to support the gamet, but for now, what would be a starting point?

How about fluffy time, such as

"around twelve-thirty" or "noon" or "at midnight on thursday"?

October 9, 2001

I am looking at tensnumscore.

It looks like it is scoring enablers with multiple numbers or persons higher than enablers with the appropriate tense.

This could be a new problem because earlier this year I ganged some verb forms together to decrease the amount of junk in the symbol table. Checking into it.

I was looking into event pronouns earlier this morning.

Some fun to be had there too, I'm sure.
The answer to the verb tense issue: provide all the appropriate tenses and numbers to the verb forms.

If the TN is underspecified, and one matches number and the other matches tense, then you might get the wrong form.

October 11, 2001

Ooof.

The robot patterns have a few issues....
Met with Mark Glover today.

He seemed interested in working with Brainhat.
October 12, 2001
Hmmmm.

I am wondering whether the routine pushadvr is good for anything at all.

I caught it pushing adverbs down onto SUBJECTS.

I fixed it.

But then what?

I promote the verbs to the affinitive.... hmmm.

Wasted effort pinning adverbs to verbs that are soon forgotten.
October 17, 2001
 I am debugging orthogonal subjects with prepositional phrases.

Why are some of these not being caught by orthelim?

I am adding calls to orthelim into matches of csubobj and csubobj-q.

They might not ought to be there.

November 7, 2001

This is being typed in the new office on the 15th floor at Founders Plaza.

A lot of stuff is going on....

Would-be initiatives:

· VoiceXML improvements to go along with the new VoiceXML 2.0 spec

· ViaVoice/Linux based implementation

· Nuance/Dialogic-based implementation. This is actually happening at a good clip.

· Improvements to Brainhat to help speech engines improve recognition rate--have an algorithm.

· Need to create a white papaer about improving speech recognition with NLP.

Mark Glover is till working toward making an off-line data store.

Martin Mroz is working on the ontology.

Jack and Mike are spending a fair amount of effort establishing business and market opportunities.

About the Nuance/Dialogic stuff:

I have the Dialogic box answering calls and recognizing speech.

The Nuance engine uses a cfg and produces the first N guesses for the application to sample.

There's a lot of crap in the 10-best.

And it may be that the correct interpretation of what the user said may not even be in the 10-best.

So, the question is: how do I improve the recognition rate using Brainhat?

Here's a sample output take from the Nuance box:

are you theirs

are you there i

are you there me

are you dead

are you there a i

i are you there i

are a you theirs

are you near i

were you near i

were you theirs

me are you there i

The first step is to choose only those constructs that are grammatically reasonable.

This should be simple enough with the Nuance engine because the

CFG describes what is allowed.

The fluff in the sample above can be pared by simple defining a more concise grammar; that should eliminate stuff like

"i are you there i."

Next, try to identify whether the results suggest a question.

If so, then go through the collection looking for the first definite answer--"yes", "no" or "not -empty-."

If we find one, then stop.

Don't run inferences if any are triggered.

Next, see if any of the results (whether question or statement) triggers an inference (but don't actually run it).

E.g. "if the speaker asks are you there...." or "if someone asks are you there...."

The first form, being more definite than the second, might win.

There could also be a new form of inference for support of disambiguation of speech.

For instance, "the speaker may say are you there," or "the speaker may ask if you are there."

These could go in their own hashed collection.

How about: "if the speaker says hello then the speaker might ask are you there."

Anyway, if we find something that satisifies a hash, then we'll go with it as the correct interpretation.

Failing everything so far, we could look at non-questions to see if the contents have anything at all to do with the context.

Subject, object, verb, attribute might be accounted for. Consider that "are you dead" seems out of context unless death is part of the conversation at hand.

If nothing at all makes sense, then we could simply ask for reinforcement: "am i dead?"

Almost before anything else, I need to clean up the input patterns.

Particularly, i need to get rid of simple statements; these are just special cases of regular statements.

Starting there....

Argh!

What do I do about words "here" and "there"?

Are they things?

Consider "he is in there."

Or are they adjectives, as in "he is there."

I think that they are places, which makes them things, though I don't want them substituting into

"there is someone here", where "there" is a thing.

Maybe I'll try making them children of nothing.

Here goes.

(later) that didn't work.

Maybe I should simply make here and there adjectives.

I will have to deal with others--"nearby" and "far away."

When I learn that someone is "here", "there" or "somewhere",

I will have to exercise an inference to say that they are "in another place" or "in this place."
Aw crap!

This isn't easy.

Let's see:

gone

here

there

somewhere

away

home

Ugh.

Maybe they're things after all.

What I guess I need is a NULL preposition to use with these words....

Now, think about the contractions: don't, won't isn't wouldn't. I treat these differently than their affirmative counterparts, in part because of the apostrophe, and in part because of the negative sense of the statement.

The issue is that in a statement such as "the ball isn't red", I miss an opportunity to push the "not" down onto the adjective. What if instead, I matched "don'", "won'", "isn'" and "wouldn'" as the enabler or verb and made "t" a synonym for "not"?

Hmmmm... words like "cannot" or "dont" wouldnt [sic] be covered....

Brain hurts.

I left off in notthat trying to figure out why the program complains that "not" is not in the context.

November 9, 2001

Fixed the "not" problem by first wrapping getconbyname() inside clone_con().

Thinking about the algorithm for improving speech recognition above, the test to see if an input triggers an inference is going to be insufficient as the base of propositions grows. Almost everything will trigger *some* inference.

November 13, 2001

Implemented the algorithm for improving speech recognition.

It looks quite promising.

The unfinished parts are 1) those that depend on seeing whether an utterance would fire an inference and 2) the feedback loop with the speaker. I might want to say, for instance, "Did you say....?" and be able to field any of "yes," "no," "no, i said...," etc.

As for testing whether an inference gets fired, I thought I might create an evil global variable that is set before the utterance is submitted to selftalk and tested afterwards.

A new debug flag, NOINFERENCE will prevent the inference from actually running, thereby saving CPU cycles.

The inference capability will be fortified by use of no-op inferences that help brainhat to understand the course of the conversation, ala:

"the speaker might ask" or "the speaker might say...."

Hmmmm... thinking about it, I really need the ponder routines to tell me if they saw anything.

But they look at the context buffer or discourse buffer. I will have to have them look at something else—particularly the statement being returned by chooseone. This needs a little bit of thought.

Hmmmm.... I could always catch the CC before it gets to addtocontext (which won't store it anyway since NOCOMMIT is set).

The I could autohash it and test for a trigger.

Perhaps I could call proposition2 directly.

In fact, I could. And I could take pains to make sure that it isn't called by declques2, attrques2, etc. Trying that.

That worked.

Now I have an issue where partially recognized patterns may score better than fully recognized patterns.

Consider "i'll have a yarx" as compared to "i'll had a hamburger".

The only thing returned from the first sentence is "I", which scores beautifully because it is 100% from the context.

I need to (finally) start checking to see if utterances are being fully parsed (somehow).

November 14, 2001

Persuant to the question of how to recognize when the input buffer has been consumed, I created an global variable called input_consumed that reports back on the situation as seen by the routines in find.c.

I'm going to fool around with it to see if I have captured all of the necessary cases.

There are some things that I definitely ignored, including testing on sloppy patterns.

I will get there.....

Note to self: repeated use of symbol table in find.c and cfind.c can't be efficient. Need to cache that stuff....

Later:

this is working great!

I have to add some smarts for the program to ask for clarification if it has no high quality interpretations of what was said.

Next, I need to get to work on the BeVocal Cafe/Wiley project and the Dialogic/Intel box.

Also should write to MyVoiceGenie (SAPI 5.1).

Mark Glover left the company today.

He wasn't up to the task of creating a database for me.

November 15, 2001

The last part of the bestfit project is getting user clarification regarding what they might have said.

With all of the flags set as they are I can easily repeat what brainhat heard back to the user.

How should it go?

"I heard <quote>."

The user can then say "right" or "yes" or something....

I was thinking about stuffing the utterance away in one of the existing globals, but since I'm already slap-happy with the use of global variables, I may as well create one expressly for this purpose.

Later, I have the program reporting "I heard...."

I need the "yes" or "right" answers to look at the global....

I probably also need to make "I said...." an optional first part of ccsent.

So far so good.

Now I need to add hash support for "the speaker might say...." or "the speaker might ask..."

Be careful here: I need to do something that is compatible with the re-enablement of speakersays.

November 16, 2001

Made a change to utter_imptv1 so that it would not use a subject when it speaks.

The reason is that I wanted to be able to say things like

"if i am happy then describe the ball."

This would end up as "if You are happy then I describe the ball."

When it came time for me to be happy, the result was a declarative sentence, not an imperative sentence, e.g.

"I describe the ball."

November 17, 2001

Back to the question about how to handle: "the speaker might say..." or "the speaker will say....".

I will create a parent, future-enablers to indicate that that speaker hasn't said anything yet.

Then there's the second part, the quote.

"The speaker might say <quote>."

I don't want the "quote" part to be evaluated.

Hmmm... how did I go about making sure that evaluations don't take place when I am learning inference templates?

I have to look into this.

Looking at my handiwork, I see that I did a preset and postunset of NOQACANDS to make sure that the context wasn't trolled for more exact replacements of the subjects, verbs and objects.

In addition, there is no call to addtocontext.

I believe I will make comp handle "the speaker might say...." as an inference template with no conseqences.

Hmmmm...

Consider the following sequence:

setdebug(NOINFERENCE)

setdebug(NOINFERENCE)

unsetdebug(NOINFERENCE)

What happens?

This is something I am looking at right now.... inference triggers used to work inside bestfit.

They seem to be broken now that I have added support for "the speaker might say...."

Perhaps I need to allow multiple copies of a single debug flag, and only remove one copy when an unset takes place...

Tired now.

November 18, 2001

The Day of the Triffids.

I broke something.

In the restaurant scenario it asks me if i am thirsty.

I say "no" and it takes that as "yes."

A more simple example:

"ask me if i am thirsty"

"are you thirsty"

"no"

"you are thirsty"

Ugh.

Found the problem.

I jhad been screwing with notthat, convinced that nobody called it anymore.

It is called from within commitansw.

(later)

Well I finally got that bestfit to work.

But what happened here:

"you have the ball."

"do you have the ball"

"i do not know" "i have the ball"

What did I do to "yes?"

November 19, 2001

There is some ugly stuff afoot inside of input-patterns.

I think that I will spend the techincal time I have here in the office working on a demo.

The grammar and procedures need some clean-up.

Today's mess "did I ask how are you" and "did I you ask what am i"....

I need a printer in a bad way.

November 21, 2001

We had a great discussion with the folks at I-A-I about doing an extravehicular space robot with Brainhat for NASA.

As for simple statements:

I need some mechanisms to be able to turn utterance evaluation on and off at will so that I can use patterns as both input for evaluation and as input for use in inferences.

I think I might want to extend mproc so that I can switch flags on and off as I make my way through the routines.

I guess if i added some functionality to mproc then

I could eliminate preproc and postproc.

Also, it is time to revisit the notion of normal forms. Whenever I am done with a semantic representation of something I should leave it in a form that the next routine (or programmer) can expect. The exercise will be empirecal, in part; I need to take stock in what I have done to date.

Darryl's here....

November 22, 2001, Thanksgiving

When I was working on the autohash routines some time ago I needed a way to sort the tags so that they would be stored and retrieved in the same order. I used the part-of-speech designation from constant.h.
I just ran into a little issue with the simple statements, particularly w.r.t. simple statements of the sort

"if the speaker asks what are you"

The pattern to be matched in a hash has an object, verb and subject. The template has a subject, verb and REQUIRES tag—presumably to make it score well.

The problem is that the values for the parts of speech effect the order:

subject=10, object=11, verb=12 and requires=7. So, the first sort (subject-verb-object) goes:

subject 10 brainhat

object 11 things

verb 12 tobe

The sort with the requires goes:

requires 7 human

subject 10 brainhat

verb 12 tobe

The fix, for this particular case, would be to have REQUIRES be numbered less than VERB and greater than SUBJECT. But it would break other cases, perhaps.

So, what do I do?

Some options:

I could create different kinds of REQUIRES' for different parts of speech--one for SUBJECTs, one for OBJECTs, and so on. This might making tests for requires a pain in the butt in scoring routines; I'll have to have a look.

The other possibility is that I could see if I might be better attaching a REQUIRES tag to the OBJECT (or whatever) and never use the REQUIRES in a sort. This would be pretty clean.

It would mean that I would need to look into every situation where a REQUIRES tag can influence the results of a question or inference.

The second suggestion is probably the best, frankly. It forces me back to the subject of normal forms too, which as I mentioned above is long overdue.
In the end, I need to be able to add new grammatical contructs without having to futz with all the innards. Autohashing saved me a lot of trouble. Normal forms can help too.

November 23, 2001

I have given it some thought and I have decided that the best way to handle the use of REQUIRES tags is to expand their number so that they are specific to different parts of speech. At the same time, I need to provide a macro and a function so that tests for REQUIRES tags will work as before.

First, assume a group of REQUIRES tags that correspond to different parts of speech:

OREQUIRES for objects

AREQUIRES for attributes

VREQUIRES for verbs

SREQUIRES for subjects

BREQUIRES for adverbs

PREQUIRES for prepositions

JREQUIRES for obj prepositions

and so on.

Next, consider a routine isrequires(tag) will take a tag and look through the list above to see if the tag is a member of the list. If it is, the function will return REQUIRES. Otherwise, it will return the tag passed in.

Last, a macro or function that will return the tag associated with the part of speech, given the corresponding xREQUIRES tag, and a function that will return the corresponding xREQUIRES tag given a part of speech tag. Since I plan to separate the part of speech and its associated xREQUIRES by on in constant.h, these macros will do a simple addition or subtraction for the time being, and perhaps forever.

(later) Ugh. What a mess this is making. I've decided to approach the problem in a different fashion. Since the whole problem is that I need hashes to sort correctly, I'll make an mproc routine that takes one of the xREQUIRES tags above, changes it to a REQUIRES tag and adds a SORT tag to the associated concept. It will be up to the hash routine to look for the SORT tag when they run. There is a DEPRECATED tag hanging around. I will steal that for this urpose.

Ugh. It gets worse.

My brain is shutting down, I think.

The sort will be based on finding an xREQUIRES tag pointing to -empty- in the concept associated with the REQUIRES.

(even later)

It ended up being a copy of the xREQUIRES tag pointing back to the concept itself. The good news is that I finally got the hash to work for the inference "if i ask what are you then you are happy."

The bad news is that it asked itself "did you asks I?"

Hmmmm....

Much to do.

November 24, 2001

I've finally gotten all of the basic office infrastructure together.

I have been looking into the grammar. There's an embarrassing amount to do yet.

But it is also time to get back to work on the VoiceXML server. For one thing, I am going to need to support N-best. I also need to be ready to take in commands like "serve foo.txt" and dynamically turn these into VoiceXML.

For proof of the pudding, I need to make the Brainhat FAQ work.

November 27, 2001

I pulled together the vxml code I need to use the N-Best capability from BeVocal. It doesn't appear to work, however. They're looking into it. I need it to work in conjunction with the project that I am doing with Mark Miller, the fellow who is writing a book for Wiley.

Today, I need to draft a proposal to IAI for work on the space robot. The parameters include:

1) the work will be for integration only; no code development is part of the effort.

There will be code development, but that will take place on our nickel.

2) the license fee for this application is zero dollars.

But I need to inform them that we will be switching to a royalty scheme in the future.

The scope of the work is....?

How about: original scope and mock-up $150/hr for 80 hours. Long term engagement, assume $85/hr for 240 hours, not including travel or lodging, for a slave. My time will always bill out at $150.

Total:

Initial scope, planning, mockup, customization:

 $150/hr * 80hr = $12,000

Assuming we pass the mock-up stage:

Longer term staff development support:

 $ 85/hr * 240hr = $20,400

Dowd's involvement past original effort:

 $150/hr * 40hr = $ 6,000

 $38,400

(Later) Rick is re-working the numbers.

November 28, 2001

Ugh!

Grammar!

It's all about the grammar.

But first, here's another kludge:

I added an rule, imp-quote-1b that will take statments of the form "ask speaker <question>", where <question> is one of the myriad questions in the grammar. I need to have the question be presented to the user, but not actually answered... hmmm. Gotta think about this.

I definitely don't want QACANDS to run.

I'm in ask_how.c.

I need an ask_what function.

The problem is that ask_how just looks for a "thing"... too simple.

What should I use for ask_what?

After much torture, I got the inference:

"if i want you then ask me what is the speaker's address and serve foo" to work.

November 29, 2001

Ugh.

My desktop machine had a virus on it. I spent the morning rebuilding the registry. Other items of note: I booked a flight to Maryland next week to go see the people at IAI. We gave them a call yesterday to talk about the proposed project. They seemed to be reeling from the quote (54K) in combination with a weak understanding about what Brainhat might be able to do for them.

Martin Mroz appears to be doing some work on the vocabulary (god bless him).

Back to work.... the grammar, stupid.

It's all about the grammar.

Broken:

"i am happy"

"am i a sad person?" (broken).

"so am i a sad person?" (works).

(later)

Thinking about the FAQ:

What is Brainhat?

What is this?

What are you?

How much does it cost?

What does it cost?

Does it cost anything?
What does it run on?

Does it run under Windows?

Does it run on SPARC?

How do you program it?

How can i get Brainhat?

How can i get a copy?

Where can i get it?

What language is it written in?

Is it like eliza?

How much memory does it need?

How much memory does it take?

How fast a machine do i need?

Do I need a fast machine?

Does it need a lot of memory?

(Fooling with simple-statement-4 and titular assignment rules. Trying to fold them into one another. Worked)

Mike had some more questions for me:

are you an internet company?

why should I buy this?

what will I do with this?

what is this for?

how long have you been in business?

where do you have offices?

who are some of your customers?

how does Brainhat make money?

is it like askjeeves?

what is natural language processing? (or is his whole book on it?)

what does it do?

does it work?

how does it work?

do you need a speech engine?

is it a speech product?

can you use it with just text?

is this artificial intelligence?

where are you located?

how do i contact you?

are you looking for partners?

are you looking to hire?

are you looking for venture capital?

what industry/markets do you want to enter?

what is your mission?

November 30, 2001

Projects:

1) Grammar.

2) Need a simple SMTP client. It need only know of one server, an MTA.

3) Need to work on the FAQ.

4) Need to work on the phone server (Intel/Dialogic).

5) Web Pages need updating (license page, etc).

6) More....

(much later)

I have been working on SMTP capability.

I wrote a working client piece so that Brainhat can send mail directly to a relay MTA.

I also fixed the timing problems with the server by using a select loop to decide when I/O was really finished.

Now i am wrestling with a little problem.

The saved_question is 'what attribute is the speaker's email address?'

When it gets committed, Brainhat says

'the email address is'

The apostrification is necessary here; need to add it.

Hi.

Going to Chili's.

December 1, 2001

I am grieving over the FAQ I am doing with Mark Miller. We originally agreed that it should be a FAQ about Brainhat, but I am thinking that I'd like to make it less of a shill. My idea was to do a FAQ about widgets. The text would be easier as well.

What might one say about a widget?

What is a widget?

What's a widget?

What does a widget cost?

What do they cost?

Do they come in colors?

How big is a widget?

Where can I get a widget?

Where can I get one?

Do I need a license?

How heavy is a widget?

What do i use a widget for?

What does a widget do?

The steps:

1) Add necessary vocabulary.

2) Customize the VXML grammar to include the new words

3) Create any canned text you might want in your responses.

4) Create a scenario.

5) Test the scenario. (use the -t flag (this should echo input, show tests)).

6) Run in VoiceXML mode.

December 3, 2001

Working on stuff.

December 4, 2001

I am trying to understand why the following pair of utterances:

"if i ask what are you then you are happy", "what are you?" gets handled right away, where as the pair "if i ask how are you then you are happy", "how are you" gets delayed. Routine addtoqs runs after quotques is called, which means that the first time around, I am depending on runqs to pick off new questions. I am looking at runqs to see if I can determine why the pattern didn't match.

(a little later...)

runqs doesn't do anything until the second time around, I think. The first time around, it hits a cycletag problem and returns.

Here's more information: the "what are you" question gets picked off and answered by speculate. The "how are you" question also gets picked off

by speculate, but doesn't produce a "yes" response to the question "did the speaker ask how are you." (Why not?) The subsequent pass through runqs fails because the cycletag doesn't allow another run through evalprop2.

(10 minutes later...)

I found a cycletag being added, but not removed. Fixing that caused the proposition to work, and now things are *very* chatty.

Ugh.

Now it's: "if i ask what do you see then you are happy." Broked.

Question: how does addtoqs work for declarative questions?

Seems like I missed something there, since a "no" answer returns an -empty- concept. Maybe declarative questions should call addtoqs before declques gets a hold of them. Still, there is some kind of turd left in the context....

That worked!

I need to apply addtoqs to all declarative questions. Also, I looked for "-empty-" in the input and refused to store a question if I saw it.

I need to add an "OR" clause to inference templates.

The cycletag that I "fixed" before was purposely not removed in the code before I got there. The idea was that find would set up the cycletag at the start of an input cycle, and that the tag would prevent repeated re-evaluation of the same proposition. It caused me trouble though because the first time through, the answer to a question was "maybe."

The second time would be "yes," if I ever got there... Have to think about how I might better handle this... Perhaps the cycletag should be set within the ponder routines and local to each of the ponder routines. That way, runqs can evaluate something that speculate did not.

Or perhaps a hybrid approach is appropriate: maybe runqs should only attempt if a previous routine failed.

December 5, 2001

On my way to IAI in Maryland.

Looking at the behaviour of the ponder routines a little more: now that I have futzed with the cycletag that prevents repeat execution of the same inference within a single input cycle, I have the same inferences being generated repeatedly. I was thinking that perhaps it would be a good idea to 1) keep the cycletag for a longer period of time, 2) leave the tags of propositions that match, but remove those that don't, 3) involve more of the hash tags in the cycletag so that I can tell the inferences apart better, 4) rotate through sets of tags on a module-N basis so that an inference that is not being recalculated now might re-become a candidate later.

Plane landing...

Now, in a cab. The cab ride is going to be expensive but the directions had about twenty steps.

I thought I might rather fool with my computer...

December 6, 2001
I have to set up some quality control and testing standards.

Everything from the dawn of time needs to go into the control system.

And I need to run it after each change. And I shouldn't move from one subject to the next until whatever changes I have made are robust and extended to all other similar constructs.

To start, let's deal with normal forms:

(See normal forms documentation.)

Formula for adding support for statements of the sort:

"if the speaker asks what is the ball..."

1) Need to grab the question an make it a simple statement.

2) Say "what is the ball?" and then ask "do i ask what is the ball?"

3) If that fails, need to look at addtoqs to make sure that the question is being recorded correctly.

4) Following that, if there is still trouble, set a break point at quotques to see if the junk that you're getting looks like the stuff you saw in the context in step 3.

5) Once that works, try "if the speaker asks what is the ball then I am happy." Set a debug flag for "tests", and watch what the program says to itself when you enter "what is the ball?" The output has to be "does the speaker ask what is the ball?" If it isn't, then you need to fix something in the speak routines.

It may take an extra tag to identify this is a special case—a CC to be uttered as a question.

Added some AUXTAGn defines so that I could mark CCs in the input routine routines and recognize them in the speak routines.

December 7, 2001
I need to bash through more of the questions, ala "do i ask..." I'm breaking things as fast as I am fixing them.

First, I need to bring some order and economy to the process. It appears that all the questions can be treated as simple statements as long as I skip some of the later mproc routines. I could add a primitive to skip to the end of the list if a particular debug flag is set. Perhaps it could be "brt1ifset <flag>", where T1 is TARGET1.
Ugh.

I can't really pass sole "things" through evalprop2 because it wants to replace certain CCs, and that is how I lose the AUXTAG I was sticking on the SUBJECT in a "where is X" question.

The only fix is to change the way "where" questions are handled throughout the code. Starting on that now... Rule of thumb:

STORE "TOBE" CONCEPTS FLAT, BUT ALWAYS RECONSTITUTE THEM WHEN PASSING THEM AROUND.

I should be able to get rid of the AUXTAGs if I do this right. I can't see any reason why I need separate routines to speak "how are you" versus to ask "how are you"....

December 8, 2001

I mucked about with the 'where' constructs... fixed a few things and broke a few things. One of themost immediate benefits is that I fixed the verb tense problems I've have by working on getbesttense. There's more broken, of course. Going back in....

"Ask where am I" causes an immediate core dump. Fixed.

Need to make "ask me <something>" work consistently. It works if the <something> is a statement. If I extend it to questions, the program attempts to answer the questions before checkcommand gets to ask the question. I either need a class of things that includes statements and questions that don't actually get answered (I think that simple-statements might be quickly becoming this class), or I need to process questions differently when they are being invoked as a sub-pattern from within a pattern that is treating them as a quote.

Hmmm.... that sort of works. It's definitely an improvement. BTW, I still have to fix "ask me what attribute is mario's email address?" so that it says "mario's email address is...." rather than "email address is..."

December 9, 2001

For the time-being, sentences CAN be simple statements, but questions CAN NOT. Just a rule.... Kind of a stinky rule though. Hmmm... I'll change that rule at some point.

I have been doing a lot of work fixing up questions, et al. I have a new problem:

"if i am happy then ask me where is the ball."

The issue is that the question "where is the ball" is motivated in part by a REQUIRES tag with the prepositional phrase in it. The routine evalprop turns REQUIRES tags into IGNORE. I think that the structure of the question should be something like:

 o

 /|\

 / | \ QUOTE

 SUBJ/ | \

 o VERB \

 bhat | \

 o \

 ask o

 /|\

 | \ REQUIRES....

Perhaps I can simply avoid traversing quoted portions of inference templates.... Trying that. I created a new list, MCLONE2_SET, for evalprop_b to traverse when nuking REQUIRES tags. Fixed.

How about this one: "how can i get (to) there?" or "how can i see the moon?"

These could be questions that pull things like:

"you can get there by riding in a car" or

"you can see the moon by looking at it."

Translations:

"if you ride in a car then you can get there" or

"if you look at the moon then you can see the moon"

These are new constructs for me. They are unexercised inference templates (which is okay). The questions are new though; I have never had to reproduce the thinking that goes into an inference. Consider "if i am happy then you are sad." This transforms to "you are sad by my being happy."

Now the question: "how can you be sad?"

And the knockout!: "i am happy."

The other problem is the presence of attributes in the last slot. "How can I get into the room" would have to be transformed into "how can i get myself into the room", where "into the room" is an adverbial phrase.

Now the immediate problem: I need a kludge so that I can test for

"if the speaker asks how can i get there."

If I translate this to "if the speaker asks can i get there..." then I will have an easier time of it.

I don't know if addtoqs is any more than a second pass at the questions asked.

The first pass comes from browsing the context because addtoqs puts a copy of every question in the context anyway--"speaker asks...."

Need to add support for "is there a....?" It means "does the colony have a....?"

More generally, I need to get on the stick with spkrsays so that I can translate idioms and peculiar formulations.

Also, I need to be able to say that "'they' means the colony."

December 10, 2001
I am implementing "<tobe> there <something>?" as "<someone> <action> <something>?"

Added first part... a simple question.

 BUG: "there is a spider on the monitor" creates hash tags for all of the elements of the prepositional phrase. That's okay. The problem is that if i compare with a hash for "the spider is described" i end up with a hash to for the attribute. CURE: need to create two hashes for attributes that are prepositional.

There is a ball.

The ball is on mars.

Is there a ball on mars?

(broken).

December 14, 2001

I'm bashing through the tests in the test directory. I'm up to test011.t.

I have made great strides in straightening out the problems with incorrect verb tenses in output. But now I'm sleepy.

December 17, 2001
Made N-Best work with BeVocal.

Working on a request for a dynamically created verb for IAI.

December 20, 2001

A person stays in a berth.

Where do I stay?
(the next day...)

This isn't actually broken, though it might need some thought.

If you say:

I stay in a berth.

Where does a person stay.

, the right answer comes back.

The issue is that "a person stays in a berth" is really more like an inference:

"if a thing is a person then a thing stays in a berth."

December 21, 2001

Moon Face's birthday.

Mike Dowd's too.
BUG:

A problem with orthogonality:

What is the kitchen?

The kitchen is a room.

Is the kitchen a room?

vNo.

The reason is that kitchen is a room and is orthogonal to room. Something is broked somewhere.

December 23, 2001

I'm grieving over the challenge of improving speech recognition some more.

I found a rhyming database. I wonder if that would have utility in making the matches fuzzy and then refocusing, based on rhyme data.

Also, I am checking to see why the inference_triggered flag doesn't seem to get set when inference-firing questions are asked.

December 24, 2001
More grieving...

I'm thinking now that the best approach will be to push a restrictive grammar on the VoiceXML server so that the sentences I get back will at least agree in number and person between verbs and subjects.

I think that I should also watch for changes in tense in conversation and score those low so that Brainhat pushes back for clarification.

I want the horizon on the context to drop off pretty rapidly.

I might want the threshold for context-based comparisons to move in response to recent scores. If everything scores high in one round, then adjust it up.

Perhaps a median or average would make sense.
Also, I noticed that the context scoring for questions seemed horribly mixed with context scoring for statements.... Something broken here?

December 26, 2001
Hmmmm.... Does the speech engine sort its guesses in terms of their confidence levels? It might not, which means that I am ascribing a little bit too much credit to the first returnee in the list.

(later)

"If I say tell me about the block then you are happy" needs more work. Also, "if i say how are you..." does not work, but "if i ask how are you...." does. I think I need to save "express" in lieu of "ask" or "say." These changes would go into spkrsys or addtoqs. I want to be a little bit deliberate about it though....

(the next day....) The fix comes with the changes I suggest tomorrow.

December 27, 2001

I have been looking at the use of the QUOTE tag and wondering whether it needs to exist or whether I'd be just plain better off without it. Consider "mario says that he is happy." The "he is happy." currently gets a QUOTE tag:

 Root

 o

 / | \

 SUBJ / | \ QUOTE

 o VERB \

 mario | \ Root

 o o

 says / | \

 / | \

 / VERB \ ATTR

 SUBJ | \

 / o o happy

 o tobe

 mario

Now if I ask "what does mario say?," I have to look for a construct with a QUOTE tag in a case where I should be looking for an OBJECT.

The next issue is that to extend the grammar to "mario knows that he is happy" means new treatment for "to know" or... what? Why not just treat these quotes as objects? I can identify them as being different from objects in that they have a "Root" node at the top. It would also reconcile the old problem of events and event pronouns: "we went to see the king. it was fun."

To do:

1) modify quotques to recognize roots, and then rename it to something more befitting, say rootobj.

2) Change all the rules that use the QUOTE tag to use an OBJECT tag.

3) Remove restriction of existing rules to express (say, ask, etc.).

4) Visit the speak routines to make sure that they're going to be compatible with the changes.

From yesterday:

"if i say tell me the block then i am happy":

"tell me about the block" becomes "tell me the block" which

would be addressed in an inference as

"does speaker say the block?"

The answer is "yes."

Be careful of the Roots though...

December 31, 2001

Making the changes to eliminate QUOTQUES.

I am going to take it one step at a time, eliminating and testing....

(later)

Will a routine rootobj even be necessary? It looks as though declques2 could do it all...

(6:50 PM)

I implemented rootobj, though I may not need it. I changed the "Z" pattern in cfind.c to use vrfy_xchild in lieu of vrfy_achild.

Ran tests. Everything looks okay so far.

I also created an indirect object tag. Now I am going to start replacing QUOTE tags with OBJECT tags in input-patterns. The first will be sent-action-10. I will also change utter_decl and the cc pattern for utter_decl.

January 1, 2002
Happy New Year...
I changed rule sent-action-10 to us statement objects. Ran tests, made a few tweaks, made rule grab grab-adjective be a sloppy sentence so that it would be taken as a last restort. Next question: how many rules do I no longer need? Checking....

I just commented out sent-action-3 because it is now eclipsed by sent-action-10. A representative sentence for sent-action-3 might have been "mario sees the princess."

rule $r`csubobj-prep`0! [$c`enablers`3!]$c`action`1! $r`sent`2

The reason that sent-action-10, shown above, works is that tell-all-csubobj is a "sent."

It matches any csubobj-prep.

Here's sent-action-3:

rule $r`csubobj-prep`0! [$c`enablers`3!]$r`actions`1! $r`subobj`2
The next problem is that the new sent-action-10 could absorb sentences where we want a prepositional phrase that follows an object to be interpreted as an adverb.

Looking into this....

Hmmm... I commented out both sent-action-10 and sent-action-3 and found that "mario sees the princess in the water" is still correctly parsed and stored by sent-action-attr-2.

(10 minutes later)

This is okay; sent-action-attr-2 gets the prepositional phrase on the end and calls whogetsattr, which is supposed to deside whether the phrase is an adjective or adverb (I'm sure it doesn't; I haven't looked at the routine in five years, probably).

Statements like "I said hello" are now broken. This is because the QUOTE tag is gone. To get this back into some kind of normal form, greetings should be hung from roots before being glued in as objects.

 o Root

 \

 \ QUOTE

 \

 o hello

The question is: what kind of tag should the link have?

Ugh... a "QUOTE?"

I guess so...

So here's the law: objects that are CCs will have their roots connected via the OBJECT link. Objects that are lone concepts, and that are not things, will be connected by the QUOTE tag, which quite nearly got stamped out of existence this week. All things that are objects will get connected, unmolested, as they are now.

Anyway, when I return, I will change the treatment of greetings to make them one level deep. (Remember to modify spkrsays.)

Hmmmm... (a little later) ...the law changed. What if I made greetings be things? That might be a great idea.

Made some changes: "hello" is a thing. I commented out the rule that treats "greetings" as a sentence of its own. Routine spkrsays is unused at this point. I will use it later when I uncouple what the speaker says from what "is."

Now I am working on imp-quote-1b.

I will have to screw with checkcommand as well.
January 2, 2002

"Are you happy?"

"Do i ask if you are happy?"

This is getting through declques2 okay. But there's too many REQUIRES tags on the result, so yesno rejects it. Need to look into that....

January 3, 2002

Now that OBJECTs can hold statements, I have to curtail the activities of addtocontext. Consider the sentence "i know that mario is stupid."

Mario's stupidity, in this case, is pretty subjective;

I don't want to add the object phrase to the context.

Hmmm... something horrible happened when I did that. I'm not sure what I broke, frankly. So, I'll go around it. It seems that I could set a flag for tobecomp{,2}, pushattrs to not push attributes. I'll try that instead.

Argh! That doesn't work either. There is something else a-foul.

I found it. I had addtocontext being called from within addtoqs. This is bad because the contents of a questions needn't be part of the context. Also, I have decided to keep the flag I set (NOMOD) to indicate that attribute routes shouldn't modify their subjects.
Hmmmmm..... Now I have a separate problem. I need to add the stuff of addtoqs to the context so that I can "do i ask if you are happy..." But I don't want modified crap in the context. Perhaps I need a routine that finds the basic (clean) copies of all of the concepts within the CC passed to addtoqs and makes a replacement for the dirty copies....

January 4, 2002

"Do I ask if you are happy" causes Brainhat to be recorded as having attribute "happy," presumably from the "you are happy" portion of the question. Need to check into it and apply NOMOD, I think.

Actually, recording the question is the issue, I think. When I record: "the speaker asks if the caller is happy" seems to cause the caller to be associated with happy.

Fixed. Looking for other candidates. Hmmm.... csubobj-statement might be something else to hack out.

January 5, 2002
Ugh.

"am i happy?"

"do i ask if i am happy?"

January 7, 2002
My brain is full....

I changed the routine that the "Z" pattern in cfind.c calls back to vrfy_achild instead of vrfy_xchild because I was having a problem comparing:

child: Root

 child things

 attr pretty

 verb tobe

 subj princess

parent things

This was in pursuit of "luigi knows that the princess is pretty."

"What does Luigi know?"

January 8, 2002

Fixed. Back on the job...

I am working through ask_what.c, which turns out to be practically

the same as utter_what.c (shock). Anyway, I think I can get rid of the dumba AUXTAGn issue if I create a new cmatch primitive that matches a concept verbatim (as opposed to performing a child match....). Doing that.

I modified imp-quote-1b with NOMOD and NOINFERENCE flags.

I need to spend some time in the morning checking 1) what I might have broken and 2) what other patterns should have similar treatment.

Also, I added a $s primitive to cfind.c to get rid of the AUXTAGn constructs, as mentioned a moment ago. So far, so good.

Now I need to see how many auxialiary tags I can get rid of.

January 9, 2002
Break in debug at the start:

debug> break tests

debug> cont

>> if i ask if you are stupid then you are happy

 if You do ask am I stupid then I am glad.

>> are you stupid?

askcc: do You asks if I am stupid?

evalprop: maybe (1)

 maybe. I.

>> hi

tellcc: You do say hello.

 hello.

>> are you stupid?

askcc: do You asks if I am stupid?

evalprop: yes (1)

tellcc: I am glad.

tellcc: You do say I am glad.

askcc: am I stupid?

tellcc: You do say I am glad.

 I am glad. yes. I am glad. I am glad.

The "are you stupid" question only runs once, so the test never completes.

This is probably fixed by working the ponder routines.

The second issue is that Brainhat ascribes an internally generated fact to the speaker, as in "you do say that I am glad:"

If i say that a person is happy then the person is an idiot.

I am happy.

The problem here is that 'i am happy' causes speaker-1 to get an attribute of 'happy' attached to it. I could set NOMOD for all input, but then how would I self-talk results? Hmmmm....

I had great fun decoupling what the speaker says from what brainhat understands.

There's more work to do, but the initial results were very promising. I said "if i say a thing is blue then a thing is red."

"the ball is blue"

"what color is the ball?"

"why?"

The answer: "the ball is red because you say that it is blue."

After my fun, I put things back the way they were for now (addtocontext in place).

Left off working on "if i ask what does the princess see then...."

January 21, 2002
Hi.

Am I storing some inferences more than once?
"a room is not expensive"

"if i ask how much is a room then you are happy."

The attribute--not expensive--is getting stored along with the inference. Why?

January 23, 2002

I am going through and fixing up even more of the stuff I exploded over the last couple weeks. Currently, the following tests have problems:

13,25,47,51,52,53,54,55,57 and 58.

Routine orthfavr is declaring eyes orthogonal to sapphire in the following case:

"the eyes are sapphire"

"are the eyes sapphire?"

Need to look at check_orthogonal in some detail.

(later)

Hmmm.... I might need to see whether orthfavr checks to make sure that the REQUIRES tag and the SUBJECT are related. I don't want to disqualify something because it is orthogonal to its parent.

January 23, 2002

I modified check_orth_things as described above.

January 24, 2002
I was looking into test013:
"the eyes are sapphire"

"sapphire is blue"

"what color are the eyes"

It doesn't work anymore, but looking into it, I can't imagine how it ever worked. I may delete test013.

Historical note: on October 1, 1998 I made an observation about:

"the eyes are sapphire."

"the eyes are blue."

"what color is the sapphire."

The answer does not come back "blue."

However, if one asks "what color is the material" or "what color are the eyes," it works. Researching... need to come back later; trying to get the FAQ server up and running.

Looking into test025.t.

if the speaker asks if the block is blue then ask speaker if the ball is red.

is the block blue?

hi.

This one has to do with inferences not firing right away.... you have to ask twice.

Why?

January 25, 2002

Looking into the last subject mentioned, above.

Setting some debug in runqs in the ponder directory.

January 26, 2002
Well, I'm getting there. I have a few more tests to clean up, particularly

test048 and test057.

Still need to understand the delay in the inference associated with test025.

In "tell me what a room costs", the "what a room costs" needs to be included as a simple-statement.

(later)

Took care of that. The question, question-what-2 and checkcommand were both outputing the answer. I made it so that checkcommand is the only source of output. I did it by setting the NOOUTPUT flag before running the pattern imp-quote-1c.

About the processing delay:

Here's what happens:

test025 says "if i ask if the block is blue then ask me if the ball is red."

1) I say "is the block blue?"

2) attrques runs the question and finds "if the speaker asks is the block blue...." as a match to "is the block blue" because I don't hash on the "speaker asks" part.

3) Because addtoqs hasn't run yet, attrques doesn't know that I have asked "is the block blue"; the question isn't in the context.

4) Like a good citizen, attrques2 adds a cycletag so that the question isn't re-run in this cycle.

5) After the question is answered ("maybe"), the ponder routines locate the statement "speaker asks if the block is blue." However, the cycletag prevents re-evaluation.

I could futz with some depth variables.

If I set checkn_cycletag to "2" in proposition2, then the inference runs. But, maybe it is time to eliminate propositions execution from attrques2 and declques2. Years ago, the inferences ran when an appropriate question came in. Now, they run speculatively.

Can I assume that all the inferences will have run before a question is asked?

Hmmmm....

Just for kicks, I am going to shut off proposition (inference) processing in atrques2 and declques2.

Done.

Testing....

Looks good.

Note to self: the flag QINFERENCES must be enabled for attrques2 and declques2 to be able to run inferences.

PAGE
168

