
Brainhat Natural Language Processing
Kevin Dowd

Atlantic Computing Technology Corp.
Hartford, Connecticut, USA
Email: dowd@atlantic.com

Abstract—This paper describes Brainhat, a natural language
processing platform.

I. I NTRODUCTION

BRAINHAT work began in 1996. I was testing my belief
that it is possible to build a complete NLP environment.

I retooled a FORTRAN profiler for use as a parser. I added
disambiguation, output generation and the ability to answer
questions and run inferences. In 1998, the code spoke. ’Hello!,’
it said, too loudly for the quiet dark of early morning.

I was lucky to have a a little bit of money. I purchased tables
at trade shows to demonstrate my talking machine. Brainhat
would chat about our visitors, making observations, asking
questions and commenting on their clothing. "That would be
great for customer relationship management...,” visitorswould
say, “did you ever consider having it do phone sex?"

Eventually, we did; we experimented with a variety of appli-
cations. We added the ability to save and recall conversations, a
database and the ability to dynamically shift domains of focus
as a conversation proceeded. We wrote interfaces for email,
instant messaging, VoiceXML, speech engines (including the
ability for Brainhat to feed vocabulary and grammar hints back
to the engines), robotics, HTML, text, a set top box and other
copies of Brainhat.

The tech economy soured. By 2004 we needed to find
jobs. The project sat in pieces for a few years, save for a
frenetic stab at an occasional university project or wild notion.
Dedicated work began anew in 2009 with the objective to
provide a scalable development and runtime environment for
work based upon Brainhat, to incorporate new features and to
test the belief that it must be possible to build a complete NLP
environment.

II. B RAINHAT BY EXAMPLE

>> the ball is red
the ball is red.
>> what color is the ball?
The ball is red.

Brainhat can parse and interpret simple English. The words
ball andred are in its vocabulary: aball is a toy, which in turn
is a thing (a noun). The wordred is an attribute (adjective).
Brainhat can attach adjectives to nouns. By saying that the
ball is red, we cause Brainhat to combine these two simple
concepts to create acomplex concept: a red ball. Brainhat
creates a copy of the ball concept and appends the attribute
concept, red, like so:

Fig. 1. a red ball

We can ask more questions:

>> is the ball blue?
No. the ball is red.
>> what color is the ball?
The ball is red.
>> do I say the ball is blue
maybe. I do not know.
>> do I say the ball is red?
Yes. You say the ball is red.
>> do I ask if the ball is blue?
Yes. You do ask is the ball blue.

A. Inferences

The program can make inferences.Inference templates are
derived from the dialog. The inference template below includes
one condition: “I ask if the ball is blue”, and one consequence:
“I want a blue ball”:

>> if I ask if a ball is blue then I want
a blue ball

if You do ask is a ball blue then You
want a blue ball.

>> is the ball blue?
Maybe. The ball. You want the blue ball.
>> why?
You wants the blue ball because You do
ask is the ball blue.

One can chain inferences; one consequence can cause
others:

>> if I see the princess then I want
the princess.

If You see the princess then You want
the princess.

>> if I want the princess then luigi

is sad.
If You want the princess then luigi
is sad.

>> if luigi is sad then mario is happy.
If he is sad then mario is glad.
>> if I want the princess then the

princess wants me.
If You want the princess then she
wants You.

>> I see the princess
You see the princess. You want the
princess. The princess wants You.
Luigi is sad. Mario is glad.

B. Taxonomy

Above, we described a taxonomic relationship when we
said aball is a toy, and atoy is a thing. Brainhat navigates
taxonomies to identify specific references from more general
references. Below, we refer to theball as atoy and then as a
thing.

>> I want the ball
You want the ball.
>> do I want a toy?
Yes. You want the ball.
>> if I want something then you are happy
if You want something then I am glad.
I am glad.

>> why are you happy?
I am glad because You want the ball.

Here’s another example showing generalization; the pro-
gram believes it wants everything it sees:

>> if you see a thing then you want
a thing

if I see a something then I want
a something.

>> you see the princess
I see the princess. I want the princess.
>> you see a ball
I see a ball. I want a ball.
>> you see water
I see water. I want water.

C. Verb Tenses

Brainhat can differentiate verb tenses:

>> i saw the princess in the water
You did see the princess in the water.
>> i see mario
You see mario.
>> what do i see?
You see mario.
>> what did i see?
You did see the princess in the water.

Two verb forms—the imperative and the hypothetical
subjunctive—have special meaning for Brainhat:

Fig. 2. taxonomy

>> tell me that you like me
I do like You.
>> do you like me?
maybe. I do not know.

The imperative is particularly important when the subject
or object is associated with an external process or robot. One
might first identify a robot—say, “Robby”. Then one might
instruct Brainhat to tell Robby to do something, e.g. “tell
Robby to put the ball in the water.”

The hypothetical subjunctive with modal verb “might”
causes Brainhat to seek resolution of the hypothesis. If, for
instance, one tells Brainhat “mario might want to see the
princess”, Brainhat will ask itself if this is true. If it doesn’t
know the answer, it may ask:

>> mario might want to see the princess.
mario might want to see the princess.
does mario want to see the princess?

>> yes
mario wants to see the princess.

These subjunctive clauses, used in conjunction with infer-
encing, make it possible to progress a dialog in a goal-oriented
fashion. For example, one could instruct Brainhat “if mario
likes women then mario might want to see the princess”. Once
we learn that mario likes women, we have more to discuss.

D. Meme Shifting

Some versions of Brainhat code have the ability to segregate
Brainhat English language programming into multiple do-
mains ormemes. Each meme can be a mix of propositions and
inference templates like those we looked at in the examples
above. Under the topological direction of a map (called ameme
map), Brainhat can shift from one meme to another as dialog
proceeds.

Inference templates and statements in the hypothetical sub-
junctive behave as honey pots in the meme-shifting algo-
rithm; they make a particular meme more attractive when
they become relative to the ongoing dialog. One might tell

Fig. 3. meme shifting

Brainhat, for instance, “I might ask where is the princess.”
If I subsequently ask where she is, the meme containing the
statement will be a prime candidate for raised focus. Similarly,
an inference template such as “if mario sees the princess then
he might be happy” may precipitate a shift to the associated
meme once brainhat learns that mario sees the princess.

III. B RAINHAT RUNTIME

We begin with a vocabulary. Brainhat’s vocabulary contains
simple concepts like a ball, or the color red. These concepts
are connected hierarchically to others—e.g. balls are toys,and
red is a color. Links between the elements define taxonomy’s
structure. Everything is the child of something else, and some
are the child or parent of many. The following shows how
taxonomic vocabulary is defined:

define woman-1
label woman
child-of human-1
person first
related man-1

define human-1
label human
label person
child-of mammal-1
wants mood-1

define mammal-1
label mammal
label creature
child-of animal-1

define animal-1
label animal
child-of things

Fig. 4. mario is happy because he saw the princess

A. Complex Concepts

These simple concepts can be combined to form arbitrarily
complex relationships. Within brainhat, these structuresare
calledcomplex concepts (CC)—ideas made from other ideas.
CCs can represent elementary assertions, e.g. “the ball is red.”
They can be propositions, such as “mario sees the princess”,
or inference templates, such as ”if the golden sun is shining
then beautiful people are happy.” They can also be statements
of cause-and-effect like ”mario is happy because he saw the
princess.” CCs can even represent questions.

Complex concepts can be envisioned as inverted trees. The
constituent concepts hang from their “roots”, like mobilesof
ideas. The more abstract parts of the idea (e.g. cause-and-
effect) live near the top. The actors and their attributes (golden
sun, beautiful people) live near the bottom. The links between
them define their relationships.

define Root-8006 [999967245] (168811376)
label sent-action-10
child-of things
auxtag no-object-context
hashval 377
subject mario-8007
verb tosee-8008
object princess-800c
tense past
number singular
person third

As processing proceeds, CCs (e.g. “mario saw the princess”)
are assembled, destroyed, evaluated, compared and archived.
Many live short lives as tendered (though sometimes incorrect)
interpretations of something the user may have said. Othersare
the result of inferences. A few CCs survive to become part of
the context of the conversation in progress, and to be added
to the pool of things “known.” The detritus left by the process
is garbage collected at the end of each input cycle.

Fig. 5. boy saw bat

B. Input Processing

Brainhat’s ability to understand, learn, answer questionsand
infer are the product of creation and transformation of CCs.
Parsing and pattern matching grammars tell brainhat how to
cast fragments of input into CCs or how to recognize the
knowledge content within a CC. Processing routines manip-
ulate the CCs to change their meaning, or combine them to
make new.

Brainhat attempts to match user input against a set of
grammar patterns, one at a time, until it finds a fit. The
“fit” is a parts-of-speech match; it does not presuppose the
meaning of the matched text. Rather, many permutations may
be generated, with many different meanings. “Boy saw bat,”
for instance, might generate CCs that represent “bat” as a
winged mammal and as an wooden mallet. “Saw” could mean
“viewed” or it could mean “cut in half.”

A rule that matches “boy saw bat” might look like this:

define xxx
label sentence
rule $c‘things‘0! $c‘actions‘1!

$c‘things‘2
map SUBJECT,VERB,OBJECT

Pattern elements corresponding toboy, saw andbat appear
in the corresponding locations. The$c‘parent‘n construct
says that brainhat should attempt to match a word that is a
child of parent, and assign it to the nth position listed in the
map directive. For instance,$c‘things‘n would match any
taxonomic child ofthings and assign it to the 0th position in
the map, making it the SUBJECT. Each potential interpretation
will be threaded onto a concept chain. The number of permu-
tations generated will depend on the number of vocabulary
definitions for each word in the input, the number of dirty1

copies of each word in circulation and the complexity of the
input.

The map directive describes what the resulting CCs should
look like. There will always be a root node. From that,
components hang down, one level deep.

CCs are typically constructed from other CCs. Matching
descends and rises, striving to build multi-level CCs from the

1a dirty concept is one that has been in the course of processing, possibly
being linked to other concepts

Fig. 6. the boy saw mary

bottom up. Expanding the previous example, we might want
to match more complicated utterances such as “the boy saw
the bat,” or “the boy saw mary” using the patterns below:

define xxx3
label sentence
rule $r‘subobj‘0! $c‘actions‘1!

$r‘subobj‘2
map SUBJECT,VERB,OBJECT

define zzz
label subobj
rule [$c‘article‘0!]$c‘things‘1
map ATTRIBUTE,ROOT

Rules can invoke other rules. The$r‘subobj’x construct
instructs Brainhat to attempt sub-rules of the typesubobj
and assign matches to the SUBJECT position. By virtue of
delegation the construction of individual components (subject,
object, etc.) to other rules, we can construct multi-level CCs.

Upon making a successful match, Brainhat passes candidate
CCs onto post-processing routines. These routines may change
the shape of the CCs, eliminate a few, or use them for speech
or to direct further processing. Eachmproc is executed in turn,
starting from the bottom and working upward in the list.

/* Where is x? */

define sent-where
label question
rule where $c‘tobe‘0! $r‘csubobj‘1
map VERB,SUBJECT
mproc SPEAK
mproc CHOOSEONE
mproc PULLWHERES
mproc TOBECOMPACT
mproc PUSHTENSE
mproc REQUIREWHERES

The rule above is taken from Brainhat’s distribution in-
put grammar. It would match questions such as “where is
the boy?” mproc routinesREQUIREWHERES, PUSHTENSE,
TOBECOMPACT andPULLWHERES change the shape of the

Fig. 7. simple additive hash

candidate CCs, dressing them up so that they become potential
answers to the question. RoutineCHOOSEONE eliminates all
of the candidates but one. The result is passed ontoSPEAK
for output.

C. Ambiguity Resolution and Choice

Brainhat navigates through ambiguity in language by eval-
uating each CC against itself (vertically), to see whether it
makes sense alone, and against a context buffer (horizontally),
to see how it fairs against ideas that came before. Reduction
in the number of permutations of potential interpretations,
pronoun disambiguation and handling of anaphors proceed
as input is shaped and processed. Brainhat further looks for
orthogonality in attributes to differentiate between actors. For
instance, Brainhat can detect a difference between a red ball
and a blue ball based on the orthogonality of the attributes red
and blue.

D. Hash Tables

Execution is in part serial—driven by input, and part
associative—driven by the affinity of data for other data. To ac-
commodate associative processing, Brainhat keeps hash tables.
Hashing is useful when one is interested in matching concepts
by their content without doing an expensive component-
by-component pattern match. It is one of the mechanisms
by which questions are answered, by which inferences are
triggered and by which meme shifting is initiated.

The components of CCs that contribute to the hash are the
parts of speech. For instance, in a simple proposition like

“Mario sees the princess,” we might choose the SUBJECT,
OBJECT and VERB as components that we care about in a
hash. Each vocabulary entry is assigned a tag number. The tag
numbers formario, to-see and princess will take part in the
hash calculation.

In some cases, the hashes are built explicitly; the code does
a pattern match against a CC, pulls out the most interesting
parts and manually constructs the hash. In other cases,auto-
hashing discovers the most interesting components. With the
interesting concepts in hand, we create an integer from their
tag numbers. This integer becomes the hash storage location,
modulo the size of the hash table. A pointer to the CC that
created the hash is stored along with a list of tags representing
the concepts that make up the hash. This allows us to check if
the hash actually corresponds to the components that caused
a successful fetch, or whether the match was a hash collision.

IV. CONCLUSION

There is quite a bit more to Brainhat. There is also a lot to
do. As with other dialog systems, conversation with Brainhat
can be brittle; once the thread is lost or the system comes
to misunderstand some input, it can be difficult to continue.
Furthermore, creating a system that is conversant over a wide
array of domains is a challenge.

We approached the domain challenge with meme-shifting.
We are going to pursue another approach as well—parallel
brainhat communities. This would be many copies of Brainhat
communicating in an ad-hoc configuration, each greedily
gathering the information that interests it and sharing their
results with the rest of the community.

Among the most interesting late developments is the elimi-
nation of language from the saved context, in part to support
meme-shifting and brainhat communities. We have the ability
to compute with knowledge that the language left behind,
without the language!

The laundry list of projects also includes:

• Look into a pattern matching front-end for processing
idiomatic language into forms that can be processed more
cheaply. AIML comes to mind.

• Hone the robot interface.
• Implement some kind of temporal tagging so that CCs

can age out.
• Burden each CC with its lineage so that if CC that led

to its existence is be found to be invalid or false, the
descendant CC can be discarded as well.

• Collect and use statistical information for dialog.
• Improve memory management.
• Document more.
• Provide some kind of language subroutine capability for

logical and mathematical computations.

